2,875
Views
0
CrossRef citations to date
0
Altmetric
Review

The Promise of Epigenomic Therapeutics in Pancreatic Cancer

, &
Pages 831-842 | Received 21 Dec 2015, Accepted 07 Mar 2016, Published online: 23 Jun 2016

References

  • Adams D , AltucciL , AntonarakisSEet al. BLUEPRINT to decode the epigenetic signature written in blood . Nat. Biotechnol.30 ( 3 ), 224 – 226 ( 2012 ).
  • Waddell N , PajicM , PatchAMet al. Whole genomes redefine the mutational landscape of pancreatic cancer . Nature518 ( 7540 ), 495 – 501 ( 2015 ).
  • Lomberk GA , UrrutiaR . The triple-code model for pancreatic cancer: cross talk among genetics, epigenetics, and nuclear structure . Surg. Clin. North Am.95 ( 5 ), 935 – 952 ( 2015 ).
  • McCleary-Wheeler AL , LomberkGA , WeissFUet al. Insights into the epigenetic mechanisms controlling pancreatic carcinogenesis . Cancer Lett.328 ( 2 ), 212 – 221 ( 2013 ).
  • Strahl BD , AllisCD . The language of covalent histone modifications . Nature403 ( 6765 ), 41 – 45 ( 2000 ).
  • Turner BM . Histone acetylation and an epigenetic code . Bioessays22 ( 9 ), 836 – 845 ( 2000 ).
  • Feinberg AP , TyckoB . The history of cancer epigenetics . Nat. Rev. Cancer4 ( 2 ), 143 – 153 ( 2004 ).
  • Goll MG , BestorTH . Eukaryotic cytosine methyltransferases . Annu. Rev. Biochem.74 , 481 – 514 ( 2005 ).
  • Sharif J , MutoM , TakebayashiSet al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA . Nature450 ( 7171 ), 908 – 912 ( 2007 ).
  • Subramaniam D , ThombreR , DharA , AnantS . DNA methyltransferases: a novel target for prevention and therapy . Front. Oncol.4 , 80 ( 2014 ).
  • Singh M , MaitraA . Precursor lesions of pancreatic cancer: molecular pathology and clinical implications . Pancreatology7 ( 1 ), 9 – 19 ( 2007 ).
  • Fouse SD , NagarajanRO , CostelloJF . Genome-scale DNA methylation analysis . Epigenomics2 ( 1 ), 105 – 117 ( 2010 ).
  • Rosty C , GeradtsJ , SatoNet al. p16 Inactivation in pancreatic intraepithelial neoplasias (PanINs) arising in patients with chronic pancreatitis . Am. J. Surg. Pathol.27 ( 12 ), 1495 – 1501 ( 2003 ).
  • Sato N , FukushimaN , MaitraAet al. Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays . Cancer Res.63 ( 13 ), 3735 – 3742 ( 2003 ).
  • Gazin C , WajapeyeeN , GobeilS , VirbasiusCM , GreenMR . An elaborate pathway required for Ras-mediated epigenetic silencing . Nature449 ( 7165 ), 1073 – 1077 ( 2007 ).
  • Lomberk G , MathisonAJ , GrzendaA , UrrutiaR . The sunset of somatic genetics and the dawn of epigenetics: a new frontier in pancreatic cancer research . Curr. Opin. Gastroenterol.24 ( 5 ), 597 – 602 ( 2008 ).
  • Lomberk GA . Epigenetic silencing of tumor suppressor genes in pancreatic cancer . J. Gastrointest. Cancer42 ( 2 ), 93 – 99 ( 2011 ).
  • Mund C , BruecknerB , LykoF . Reactivation of epigenetically silenced genes by DNA methyltransferase inhibitors: basic concepts and clinical applications . Epigenetics1 ( 1 ), 7 – 13 ( 2006 ).
  • Christman JK . 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy . Oncogene21 ( 35 ), 5483 – 5495 ( 2002 ).
  • Ghoshal K , BaiS . DNA methyltransferases as targets for cancer therapy . Drugs Today (Barc.)43 ( 6 ), 395 – 422 ( 2007 ).
  • Barneda-Zahonero B , ParraM . Histone deacetylases and cancer . Mol. Oncol.6 ( 6 ), 579 – 589 ( 2012 ).
  • Marmorstein R , RothSY . Histone acetyltransferases: function, structure, and catalysis . Curr. Opin. Genet. Dev.11 ( 2 ), 155 – 161 ( 2001 ).
  • Arrowsmith CH , BountraC , FishPV , LeeK , SchapiraM . Epigenetic protein families: a new frontier for drug discovery . Nat. Rev. Drug Discov.11 ( 5 ), 384 – 400 ( 2012 ).
  • Farria A , LiW , DentSY . KATs in cancer: functions and therapies . Oncogene34 ( 38 ), 4901 – 4913 ( 2015 ).
  • Mottamal M , ZhengS , HuangTL , WangG . Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents . Molecules20 ( 3 ), 3898 – 3941 ( 2015 ).
  • Marsoni S , DamiaG , CamboniG . A work in progress: the clinical development of histone deacetylase inhibitors . Epigenetics3 ( 3 ), 164 – 171 ( 2008 ).
  • Blasco F , PenuelasS , CascalloMet al. Expression profiles of a human pancreatic cancer cell line upon induction of apoptosis search for modulators in cancer therapy . Oncology67 ( 3–4 ), 277 – 290 ( 2004 ).
  • Ouaissi M , SielezneffI , SilvestreRet al. High histone deacetylase 7 (HDAC7) expression is significantly associated with adenocarcinomas of the pancreas . Ann. Surg. Oncol.15 ( 8 ), 2318 – 2328 ( 2008 ).
  • Truty MJ , LomberkG , Fernandez-ZapicoME , UrrutiaR . Silencing of the transforming growth factor-beta (TGFbeta) receptor II by Kruppel-like factor 14 underscores the importance of a negative feedback mechanism in TGFbeta signaling . J. Biol. Chem.284 ( 10 ), 6291 – 6300 ( 2009 ).
  • Grzenda A , LomberkG , SvingenPet al. Functional characterization of EZH2beta reveals the increased complexity of EZH2 isoforms involved in the regulation of mammalian gene expression . Epigenetics Chromatin6 ( 1 ), 3 ( 2013 ).
  • Lomberk G , MathisonAJ , GrzendaAet al. Sequence-specific recruitment of heterochromatin protein 1 via interaction with Kruppel-like factor 11, a human transcription factor involved in tumor suppression and metabolic diseases . J. Biol. Chem.287 ( 16 ), 13026 – 13039 ( 2012 ).
  • Martin C , ZhangY . The diverse functions of histone lysine methylation . Nat. Rev. Mol. Cell Biol.6 ( 11 ), 838 – 849 ( 2005 ).
  • Di Lorenzo A , BedfordMT . Histone arginine methylation . FEBS Lett.585 ( 13 ), 2024 – 2031 ( 2011 ).
  • Tian X , ZhangS , LiuHMet al. Histone lysine-specific methyltransferases and demethylases in carcinogenesis: new targets for cancer therapy and prevention . Curr. Cancer Drug Targets13 ( 5 ), 558 – 579 ( 2013 ).
  • Schapira M . Structural chemistry of human SET domain protein methyltransferases . Curr. Chem. Genomics5 ( Suppl. 1 ), 85 – 94 ( 2011 ).
  • McGrath J , TrojerP . Targeting histone lysine methylation in cancer . Pharmacol. Ther.150 , 1 – 22 ( 2015 ).
  • Wei Y , XiaW , ZhangZet al. Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers . Mol. Carcinog.47 ( 9 ), 701 – 706 ( 2008 ).
  • Ougolkov AV , BilimVN , BilladeauDD . Regulation of pancreatic tumor cell proliferation and chemoresistance by the histone methyltransferase enhancer of zeste homologue 2 . Clin. Cancer Res.14 ( 21 ), 6790 – 6796 ( 2008 ).
  • Kotake Y , CaoR , ViatourP , SageJ , ZhangY , XiongY . pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene . Genes Dev.21 ( 1 ), 49 – 54 ( 2007 ).
  • Miranda TB , CortezCC , YooCBet al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation . Mol. Cancer Ther.8 ( 6 ), 1579 – 1588 ( 2009 ).
  • Avan A , CreaF , PaolicchiEet al. Molecular mechanisms involved in the synergistic interaction of the EZH2 inhibitor 3-deazaneplanocin A with gemcitabine in pancreatic cancer cells . Mol. Cancer Ther.11 ( 8 ), 1735 – 1746 ( 2012 ).
  • Thinnes CC , EnglandKS , KawamuraA , ChowdhuryR , SchofieldCJ , HopkinsonRJ . Targeting histone lysine demethylases – progress, challenges, and the future . Biochim. Biophys. Acta1839 ( 12 ), 1416 – 1432 ( 2014 ).
  • Rotili D , MaiA . Targeting histone demethylases: a new avenue for the fight against cancer . Genes Cancer2 ( 6 ), 663 – 679 ( 2011 ).
  • Bartel DP . MicroRNAs: target recognition and regulatory functions . Cell136 ( 2 ), 215 – 233 ( 2009 ).
  • Filipowicz W , BhattacharyyaSN , SonenbergN . Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?Nat. Rev. Genet.9 ( 2 ), 102 – 114 ( 2008 ).
  • Lee EJ , GusevY , JiangJet al. Expression profiling identifies microRNA signature in pancreatic cancer . Int. J. Cancer120 ( 5 ), 1046 – 1054 ( 2007 ).
  • Szafranska AE , DavisonTS , JohnJet al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma . Oncogene26 ( 30 ), 4442 – 4452 ( 2007 ).
  • Bloomston M , FrankelWL , PetroccaFet al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis . JAMA297 ( 17 ), 1901 – 1908 ( 2007 ).
  • Li Z , RanaTM . Therapeutic targeting of microRNAs: current status and future challenges . Nat. Rev. Drug Discov.13 ( 8 ), 622 – 638 ( 2014 ).
  • Seligson DB , HorvathS , McBrianMAet al. Global levels of histone modifications predict prognosis in different cancers . Am. J. Pathol.174 ( 5 ), 1619 – 1628 ( 2009 ).
  • Yun M , WuJ , WorkmanJL , LiB . Readers of histone modifications . Cell Res.21 ( 4 ), 564 – 578 ( 2011 ).
  • Rothbart SB , StrahlBD . Interpreting the language of histone and DNA modifications . Biochim. Biophys. Acta1839 ( 8 ), 627 – 643 ( 2014 ).
  • Filippakopoulos P , KnappS . Targeting bromodomains: epigenetic readers of lysine acetylation . Nat. Rev. Drug Discov.13 ( 5 ), 337 – 356 ( 2014 ).
  • Filippakopoulos P , PicaudS , MangosMet al. Histone recognition and large-scale structural analysis of the human bromodomain family . Cell149 ( 1 ), 214 – 231 ( 2012 ).
  • Mazur PK , HernerA , MelloSSet al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma . Nat. Med.21 ( 10 ), 1163 – 1171 ( 2015 ).
  • Fearon ER , VogelsteinB . A genetic model for colorectal tumorigenesis . Cell61 ( 5 ), 759 – 767 ( 1990 ).
  • Hruban RH , GogginsM , ParsonsJ , KernSE . Progression model for pancreatic cancer . Clin. Cancer Res.6 ( 8 ), 2969 – 2972 ( 2000 ).
  • Sato N , MaitraA , FukushimaNet al. Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma . Cancer Res.63 ( 14 ), 4158 – 4166 ( 2003 ).
  • Ueki T , ToyotaM , SkinnerHet al. Identification and characterization of differentially methylated CpG islands in pancreatic carcinoma . Cancer Res.61 ( 23 ), 8540 – 8546 ( 2001 ).
  • Ueki T , ToyotaM , SohnTet al. Hypermethylation of multiple genes in pancreatic adenocarcinoma . Cancer Res.60 ( 7 ), 1835 – 1839 ( 2000 ).