8,250
Views
0
CrossRef citations to date
0
Altmetric
Review

Oxidative Stress Signaling to Chromatin in Health and Disease

&
Pages 843-862 | Received 05 Jan 2016, Accepted 07 Mar 2016, Published online: 20 Jun 2016

References

  • Chen Z , ZhongC . Oxidative stress in Alzheimer’s disease . Neurosci. Bull.30 ( 2 ), 271 – 281 ( 2014 ).
  • Yan MH , WangX , ZhuX . Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease . Free Radic. Biol. Med.62 , 90 – 101 ( 2013 ).
  • Poon HF , HensleyK , ThongboonkerdVet al. Redox proteomics analysis of oxidatively modified proteins in G93A–SOD1 transgenic mice – a model of familial amyotrophic lateral sclerosis . Free Radic. Biol. Med.39 ( 4 ), 453 – 462 ( 2005 ).
  • Yan L-J . Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress . J. Diabetes Res.2014 , 137919 ( 2014 ).
  • Giacco F , BrownleeM . Oxidative stress and diabetic complications . Circ. Res.107 ( 9 ), 1058 – 1070 ( 2010 ).
  • Madamanchi NR , VendrovA , RungeMS . Oxidative stress and vascular disease . Arterioscler. Thromb. Vasc. Biol.25 ( 1 ), 29 – 38 ( 2005 ).
  • Hernanz R , BrionesAM , SalaicesM , AlonsoMJ . New roles for old pathways? A circuitous relationship between reactive oxygen species and cyclo-oxygenase in hypertension . Clin. Sci.126 ( 2 ), 111 – 121 ( 2014 ).
  • Perl A . Oxidative stress in the pathology and treatment of systemic lupus erythematosus . Nat. Rev. Rheumatol.9 ( 11 ), 674 – 686 ( 2013 ).
  • Block K , GorinY . Aiding and abetting roles of NOX oxidases in cellular transformation . Nat. Rev. Cancer12 ( 9 ), 627 – 637 ( 2012 ).
  • Sabharwal SS , SchumackerPT . Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel?Nat. Rev. Cancer14 ( 11 ), 709 – 721 ( 2014 ).
  • Badeaux AI , ShiY . Emerging roles for chromatin as a signal integration and storage platform . Nat. Rev. Mol. Cell Biol.14 ( 4 ), 211 – 224 ( 2013 ).
  • Schübeler D . Function and information content of DNA methylation . Nature517 ( 7534 ), 321 – 326 ( 2015 ).
  • Bannister AJ , KouzaridesT . Regulation of chromatin by histone modifications . Cell Res.21 ( 3 ), 381 – 395 ( 2011 ).
  • Sies H , JonesD . Oxidative Stress . In : Encyclopedia of Stress (Second Edition) . FinkG ( Ed. ). Academic Press , New York, USA , 45 – 48 ( 2007 ).
  • Kojer K , RiemerJ . Balancing oxidative protein folding: the influences of reducing pathways on disulfide bond formation . Biochim. Biophys. Acta1844 ( 8 ), 1383 – 1390 ( 2014 ).
  • López-Mirabal HR , WintherJR . Redox characteristics of the eukaryotic cytosol . Biochim. Biophys. Acta1783 ( 4 ), 629 – 640 ( 2008 ).
  • Espinosa-Diez C , MiguelV , MennerichDet al. Antioxidant responses and cellular adjustments to oxidative stress . Redox Biol.6 , 183 – 197 ( 2015 ).
  • Pisoschi AM , PopA . The role of antioxidants in the chemistry of oxidative stress: a review . Eur. J. Med. Chem.97 , 55 – 74 ( 2015 ).
  • Go Y-M , JonesDP . Redox control systems in the nucleus: mechanisms and functions . Antioxid. Redox Signal.13 ( 4 ), 489 – 509 ( 2010 ).
  • Kowaltowski AJ , de Souza-PintoNC , CastilhoRF , VercesiAE . Mitochondria and reactive oxygen species . Free Radic. Biol. Med.47 ( 4 ), 333 – 343 ( 2009 ).
  • Tretter L , Adam-ViziV . Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress . Philos. Trans. R. Soc. B Biol. Sci.360 ( 1464 ), 2335 – 2345 ( 2005 ).
  • Murphy MP . How mitochondria produce reactive oxygen species . Biochem. J.417 ( Pt 1 ), 1 – 13 ( 2009 ).
  • St-Pierre J , BuckinghamJA , RoebuckSJ , BrandMD . Topology of superoxide production from different sites in the mitochondrial electron transport chain . J. Biol. Chem.277 ( 47 ), 44784 – 44790 ( 2002 ).
  • Lambeth JD . NOX enzymes and the biology of reactive oxygen . Nat. Rev. Immunol.4 ( 3 ), 181 – 189 ( 2004 ).
  • Radi R . Peroxynitrite, a stealthy biological oxidant . J. Biol. Chem.288 ( 37 ), 26464 – 26472 ( 2013 ).
  • Petry A , WeitnauerM , GörlachA . Receptor activation of NADPH oxidases . Antioxid. Redox Signal.13 ( 4 ), 467 – 487 ( 2009 ).
  • Matsushima S , KurodaJ , AgoTet al. Increased oxidative stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy . Circ. Res.112 ( 4 ), 651 – 663 ( 2013 ).
  • Schieber M , ChandelNS . ROS function in redox signaling and oxidative stress . Curr. Biol.24 ( 10 ), R453 – R462 ( 2014 ).
  • Reczek CR , ChandelNS . ROS-dependent signal transduction . Curr. Opin. Cell Biol.33 , 8 – 13 ( 2015 ).
  • Meng T-C , FukadaT , TonksNK . Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo . Mol. Cell9 ( 2 ), 387 – 399 ( 2002 ).
  • Lee S-R , YangK-S , KwonJ , LeeC , JeongW , RheeSG . Reversible inactivation of the tumor suppressor PTEN by H2O2 . J. Biol. Chem.277 ( 23 ), 20336 – 20342 ( 2002 ).
  • Kamata H , HondaS , MaedaS , ChangL , HirataH , KarinM . Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases . Cell120 ( 5 ), 649 – 661 ( 2005 ).
  • Nadeau PJ , CharetteSJ , ToledanoMB , LandryJ . Disulfide bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H2O2-induced c-Jun NH2-terminal kinase activation and apoptosis . Mol. Biol. Cell18 ( 10 ), 3903 – 3913 ( 2007 ).
  • Marinho HS , RealC , CyrneL , SoaresH , AntunesF . Hydrogen peroxide sensing, signaling and regulation of transcription factors . Redox Biol.2 , 535 – 562 ( 2014 ).
  • Nelson KK , MelendezJA . Mitochondrial redox control of matrix metalloproteinases . Free Radic. Biol. Med.37 ( 6 ), 768 – 784 ( 2004 ).
  • Provost C , ChoufaniF , AvedanianL , BkailyG , GobeilF , JacquesD . Nitric oxide and reactive oxygen species in the nucleus revisited . Can. J. Physiol. Pharmacol.88 ( 3 ), 296 – 304 ( 2010 ).
  • Saluja R , JyotiA , ChatterjeeMet al. Molecular and biochemical characterization of nitric oxide synthase isoforms and their intracellular distribution in human peripheral blood mononuclear cells . Biochim. Biophys. Acta1813 ( 10 ), 1700 – 1707 ( 2011 ).
  • Stuehr DJ , SantoliniJ , WangZ-Q , WeiC-C , AdakS . Update on mechanism and catalytic regulation in the NO synthases . J. Biol. Chem.279 ( 35 ), 36167 – 36170 ( 2004 ).
  • Hill BG , DrankaBP , BaileySM , LancasterJR , Darley-UsmarVM . What part of NO don’t you understand? Some answers to the cardinal questions in nitric oxide biology . J. Biol. Chem.285 ( 26 ), 19699 – 19704 ( 2010 ).
  • Stamati K , MuderaV , CheemaU . Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering . J. Tissue Eng.2 ( 1 ), 2041731411432365 ( 2011 ).
  • Crapo JD , OuryT , RabouilleC , SlotJW , ChangLY . Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells . Proc. Natl Acad. Sci. USA89 ( 21 ), 10405 – 10409 ( 1992 ).
  • Malhotra JD , KaufmanRJ . Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?Antioxid. Redox Signal.9 ( 12 ), 2277 – 2293 ( 2007 ).
  • Lodhi IJ , SemenkovichCF . Peroxisomes: a nexus for lipid metabolism and cellular signaling . Cell Metab.19 ( 3 ), 380 – 392 ( 2014 ).
  • Nordgren M , FransenM . Peroxisomal metabolism and oxidative stress . Biochimie98 , 56 – 62 ( 2014 ).
  • Bienert GP , ChaumontF . Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide . Biochim. Biophys. Acta1840 ( 5 ), 1596 – 1604 ( 2014 ).
  • Lu J , HolmgrenA . The thioredoxin antioxidant system . Free Radic. Biol. Med.66 , 75 – 87 ( 2014 ).
  • Ye Z-W , ZhangJ , TownsendDM , TewKD . Oxidative stress, redox regulation and diseases of cellular differentiation . Biochim. Biophys. Acta1850 ( 8 ), 1607 – 1621 ( 2015 ).
  • Wu Y , AntonyS , MeitzlerJL , DoroshowJH . Molecular mechanisms underlying chronic inflammation-associated cancers . Cancer Lett.345 ( 2 ), 164 – 173 ( 2014 ).
  • Hou Z , FalconeDJ , SubbaramaiahK , DannenbergAJ . Macrophages induce COX-2 expression in breast cancer cells: role of IL-1β autoamplification . Carcinogenesis32 ( 5 ), 695 – 702 ( 2011 ).
  • Berry C , HamiltonCA , BrosnanMJet al. Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxide production in human internal mammary arteries . Circulation101 ( 18 ), 2206 – 2212 ( 2000 ).
  • Wever RMF , van DamT , van RijnHJM , de GrootF , RabelinkTJ . Tetrahydrobiopterin regulates superoxide and nitric oxide generation by recombinant endothelial nitric oxide synthase . Biochem. Biophys. Res. Commun.237 ( 2 ), 340 – 344 ( 1997 ).
  • Vásquez-Vivar J , KalyanaramanB , MartásekPet al. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors . Proc. Natl Acad. Sci. USA95 ( 16 ), 9220 – 9225 ( 1998 ).
  • Lin MI , FultonD , BabbittRet al. Phosphorylation of threonine 497 in endothelial nitric-oxide synthase coordinates the coupling of L-arginine metabolism to efficient nitric oxide production . J. Biol. Chem.278 ( 45 ), 44719 – 44726 ( 2003 ).
  • Ou J , OuZ , AckermanAW , OldhamKT , PritchardKAJr . Inhibition of heat shock protein 90 (hsp90) in proliferating endothelial cells uncouples endothelial nitric oxide synthase activity . Free Radic. Biol. Med.34 ( 2 ), 269 – 276 ( 2003 ).
  • Yim MB , KangJH , YimHS , KwakHS , ChockPB , StadtmanER . A gain-of-function of an amyotrophic lateral sclerosis-associated Cu, Zn-superoxide dismutase mutant: an enhancement of free radical formation due to a decrease in Km for hydrogen peroxide . Proc. Natl Acad. Sci. USA93 ( 12 ), 5709 – 5714 ( 1996 ).
  • Crow JP , SampsonJB , ZhuangY , ThompsonJA , BeckmanJS . Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite . J. Neurochem.69 ( 5 ), 1936 – 1944 ( 1997 ).
  • Góth L , VitaiM , RassP , SükeiE , PáyA . Detection of a novel familial catalase mutation (Hungarian type D) and the possible risk of inherited catalase deficiency for diabetes mellitus . Electrophoresis26 ( 9 ), 1646 – 1649 ( 2005 ).
  • Bostwick DG , AlexanderEE , SinghRet al. Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer . Cancer89 ( 1 ), 123 – 134 ( 2000 ).
  • Min JY , LimS-O , JungG . Downregulation of catalase by reactive oxygen species via hypermethylation of CpG island II on the catalase promoter . FEBS Lett.584 ( 11 ), 2427 – 2432 ( 2010 ).
  • Farina M , AvilaDS , da RochaJBT , AschnerM . Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury . Neurochem. Int.62 ( 5 ), 575 – 594 ( 2013 ).
  • Doughan AK , HarrisonDG , DikalovSI . Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction . Circ. Res.102 ( 4 ), 488 – 496 ( 2008 ).
  • Rathore R , ZhengY-M , NiuC-Fet al. Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells . Free Radic. Biol. Med.45 ( 9 ), 1223 – 1231 ( 2008 ).
  • Hwang NR , YimS-H , KimYMet al. Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions . Biochem. J.423 ( 2 ), 253 – 264 ( 2009 ).
  • Martínez-Revelles S , AvendañoMS , García-RedondoABet al. Reciprocal relationship between reactive oxygen species and cyclooxygenase-2 and vascular dysfunction in hypertension . Antioxid. Redox Signal.18 ( 1 ), 51 – 65 ( 2012 ).
  • Dixon SJ , LembergKM , LamprechtMRet al. Ferroptosis: an iron-dependent form of nonapoptotic cell death . Cell149 ( 5 ), 1060 – 1072 ( 2012 ).
  • Circu ML , AwTY . Reactive oxygen species, cellular redox systems and apoptosis . Free Radic. Biol. Med.48 ( 6 ), 749 – 762 ( 2010 ).
  • Gehrmann W , ElsnerM , LenzenS . Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic β-cells . Diabetes Obes. Metab.12 ( Suppl. 2 ), 149 – 158 ( 2010 ).
  • Angelova PR , HorrocksMH , KlenermanD , GandhiS , AbramovAY , ShchepinovMS . Lipid peroxidation is essential for α-synuclein-induced cell death . J. Neurochem.133 ( 4 ), 582 – 589 ( 2015 ).
  • Meira LB , BugniJM , GreenSLet al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice . J. Clin. Invest.118 ( 7 ), 2516 – 2525 ( 2008 ).
  • Remmen HV , IkenoY , HamiltonMet al. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging . Physiol. Genomics16 ( 1 ), 29 – 37 ( 2003 ).
  • Mahalingaiah PKS , SinghKP . Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells . PLoS ONE9 ( 1 ), e87371 ( 2014 ).
  • Al-Shobaili HA , Al RobaeeAA , AlzolibaniAA , RasheedZ . Antibodies against 4-hydroxy-2-nonenal modified epitopes recognized chromatin and its oxidized forms: role of chromatin, oxidized forms of chromatin and 4-hydroxy-2-nonenal modified epitopes in the etiopathogenesis of SLE . Dis. Markers33 ( 1 ), 19 – 34 ( 2012 ).
  • Lunec J , HerbertK , BlountS , GriffithsHR , EmeryP . 8-Hydroxydeoxyguanosine: a marker of oxidative DNA damage in systemic lupus erythematosus . FEBS Lett.348 ( 2 ), 131 – 138 ( 1994 ).
  • Görlach A , BrandesRP , NguyenK , AmidiM , DehghaniF , BusseR . A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall . Circ. Res.87 ( 1 ), 26 – 32 ( 2000 ).
  • Julienne H , ZoufirA , AuditB , ArneodoA . Human genome replication proceeds through four chromatin states . PLoS Comput. Biol.9 ( 10 ), e1003233 ( 2013 ).
  • Yan S-J , LimSJ , ShiS , DuttaP , LiWX . Unphosphorylated STAT and heterochromatin protect genome stability . FASEB J.25 ( 1 ), 232 – 241 ( 2011 ).
  • Wang D , ZhouJ , LiuXet al. Methylation of SUV39H1 by SET7/9 results in heterochromatin relaxation and genome instability . Proc. Natl Acad. Sci. USA110 ( 14 ), 5516 – 5521 ( 2013 ).
  • Larson K , YanS-J , TsurumiAet al. Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis . PLoS Genet.8 ( 1 ), e1002473 ( 2012 ).
  • Zhu Q , PaoGM , HuynhAMet al. BRCA1 tumour suppression occurs via heterochromatin-mediated silencing . Nature477 ( 7363 ), 179 – 184 ( 2011 ).
  • Bernard P , MaureJF , PartridgeJF , GenierS , JaverzatJP , AllshireRC . Requirement of heterochromatin for cohesion at centromeres . Science294 ( 5551 ), 2539 – 2542 ( 2001 ).
  • Peters AHFM , O’CarrollD , ScherthanHet al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability . Cell107 ( 3 ), 323 – 337 ( 2001 ).
  • Halicka HD , ZhaoH , PodhoreckaM , TraganosF , DarzynkiewiczZ . Cytometric detection of chromatin relaxation, an early reporter of DNA damage response . Cell Cycle Georget. Tex.8 ( 14 ), 2233 – 2237 ( 2009 ).
  • Frost B , HembergM , LewisJ , FeanyMB . Tau promotes neurodegeneration through global chromatin relaxation . Nat. Neurosci.17 ( 3 ), 357 – 366 ( 2014 ).
  • Khurana V , LuY , SteinhilbML , OldhamS , ShulmanJM , FeanyMB . TOR-mediated cell-cycle activation causes neurodegeneration in a drosophila tauopathy model . Curr. Biol.16 ( 3 ), 230 – 241 ( 2006 ).
  • Bosch-Presegué L , Raurell-VilaH , Marazuela-DuqueAet al. Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection . Mol. Cell42 ( 2 ), 210 – 223 ( 2011 ).
  • Dixit K , KhanMA , SharmaYD , Moinuddin , AlamK . Physicochemical studies on peroxynitrite-modified H3 histone . Int. J. Biol. Macromol.46 ( 1 ), 20 – 26 ( 2010 ).
  • Khan MA , DixitK , Moinuddin , ArifZ , AlamK . Studies on peroxynitrite-modified H1 histone: implications in systemic lupus erythematosus . Biochimie97 , 104 – 113 ( 2014 ).
  • Ayala A , MunozMF , ArguellesS . Lipid Peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal, lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal . Oxidative Med. Cell. Longev. Oxidative Med. Cell. Longev.2014 , e360438 ( 2014 ).
  • Beisswenger PJ , HowellSK , SmithK , SzwergoldBS . Glyceraldehyde-3-phosphate dehydrogenase activity as an independent modifier of methylglyoxal levels in diabetes . Biochim. Biophys. Acta1637 ( 1 ), 98 – 106 ( 2003 ).
  • Niwa T . 3-Deoxyglucosone: metabolism, analysis, biological activity, and clinical implication . J. Chromatogr. B. Biomed. Sci. App.731 ( 1 ), 23 – 36 ( 1999 ).
  • Singh R , BardenA , MoriT , BeilinL . Advanced glycation end-products: a review . Diabetologia44 ( 2 ), 129 – 146 ( 2001 ).
  • Nagai R , IkedaK , HigashiTet al. Hydroxyl radical mediates N -(carboxymethyl)lysine formation from amadori product . Biochem. Biophys. Res. Commun.234 ( 1 ), 167 – 172 ( 1997 ).
  • Fu MX , Wells-KnechtKJ , BlackledgeJA , LyonsTJ , ThorpeSR , BaynesJW . Glycation, glycoxidation, and cross-linking of collagen by glucose. Kinetics, mechanisms, and inhibition of late stages of the Maillard reaction . Diabetes43 ( 5 ), 676 – 683 ( 1994 ).
  • Baumann M . Role of advanced glycation end products in hypertension and cardiovascular risk: human studies . J. Am. Soc. Hypertens. JASH6 ( 6 ), 427 – 435 ( 2012 ).
  • Srikanth V , MaczurekA , PhanTet al. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease . Neurobiol. Aging32 ( 5 ), 763 – 777 ( 2011 ).
  • Alzolibani AA , Al RobaeeAA , Al-ShobailiHA , RasheedZ . 4-Hydroxy-2-nonenal modified histone-H2A: a possible antigenic stimulus for systemic lupus erythematosus autoantibodies . Cell. Immunol.284 ( 1 ), 154 – 162 ( 2013 ).
  • Ashraf JM , AhmadS , RabbaniGet al. Physicochemical analysis of structural alteration and advanced glycation end products generation during glycation of H2A histone by 3-deoxyglucosone . IUBMB Life66 ( 10 ), 686 – 693 ( 2014 ).
  • Ashraf JM , RabbaniG , AhmadSet al. Glycation of H1 histone by 3-deoxyglucosone: effects on protein structure and generation of different advanced glycation end products . PLoS ONE10 ( 6 ), e0130630 ( 2015 ).
  • Ashraf JM , AhmadS , RabbaniGet al. 3-Deoxyglucosone: a potential glycating agent accountable for structural alteration in H3 histone protein through generation of different AGEs . PLoS ONE10 ( 2 ), e0116804 ( 2015 ).
  • Mir AR , UddinM , AlamK , AliA . Methylglyoxal mediated conformational changes in histone H2A-generation of carboxyethylated advanced glycation end products . Int. J. Biol. Macromol.69 , 260 – 266 ( 2014 ).
  • Rahmanpour R , BathaieSZ . Histone H1 structural changes and its interaction with DNA in the presence of high glucose concentration in vivo and in vitro . J. Biomol. Struct. Dyn.28 ( 4 ), 575 – 586 ( 2011 ).
  • Galligan JJ , RoseKL , BeaversWNet al. Stable histone adduction by 4-oxo-2-nonenal: a potential link between oxidative stress and epigenetics . J. Am. Chem. Soc.136 ( 34 ), 11864 – 11866 ( 2014 ).
  • Chen D , FangL , LiH , TangM , JinC . Cigarette smoke component acrolein modulates chromatin assembly by inhibiting histone acetylation . J. Biol. Chem.288 ( 30 ), 21678 – 21687 ( 2013 ).
  • Cervantes-Laurean D , RobertsMJ , JacobsonEL , JacobsonMK . Nuclear proteasome activation and degradation of carboxymethylated histones in human keratinocytes following glyoxal treatment . Free Radic. Biol. Med.38 ( 6 ), 786 – 795 ( 2005 ).
  • Manevich Y , FeinsteinSI , FisherAB . Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with πGST . Proc. Natl Acad. Sci. USA101 ( 11 ), 3780 – 3785 ( 2004 ).
  • Grek CL , ZhangJ , ManevichY , TownsendDM , TewKD . Causes and consequences of cysteine s-glutathionylation . J. Biol. Chem.288 ( 37 ), 26497 – 26504 ( 2013 ).
  • de Luca A , MoroniN , SerafinoAet al. Treatment of doxorubicin-resistant MCF7/Dx cells with nitric oxide causes histone glutathionylation and reversal of drug resistance . Biochem. J.440 ( 2 ), 175 – 183 ( 2011 ).
  • García-Giménez JL , OlasoG , HakeSBet al. Histone H3 glutathionylation in proliferating mammalian cells destabilizes nucleosomal structure . Antioxid. Redox Signal.19 ( 12 ), 1305 – 1320 ( 2013 ).
  • Balasubramanian S , HurleyLH , NeidleS . Targeting G-quadruplexes in gene promoters: a novel anticancer strategy?Nat. Rev. Drug Discov.10 ( 4 ), 261 – 275 ( 2011 ).
  • Clark DW , PhangT , EdwardsMG , GeraciMW , GillespieMN . Promoter G-quadruplex sequences are targets for base oxidation and strand cleavage during hypoxia-induced transcription . Free Radic. Biol. Med.53 ( 1 ), 51 – 59 ( 2012 ).
  • Ba X , BacsiA , LuoJet al. 8-oxoguanine DNA glycosylase-1 augments proinflammatory gene expression by facilitating the recruitment of site-specific transcription factors . J. Immunol.192 ( 5 ), 2384 – 2394 ( 2014 ).
  • Valinluck V , TsaiH-H , RogstadDK , BurdzyA , BirdA , SowersLC . Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2) . Nucleic Acids Res.32 ( 14 ), 4100 – 4108 ( 2004 ).
  • Deaton AM , BirdA . CpG islands and the regulation of transcription . Genes Dev.25 ( 10 ), 1010 – 1022 ( 2011 ).
  • Dickson KM , GustafsonCB , YoungJI , ZüchnerS , WangG . Ascorbate-induced generation of 5-hydroxymethylcytosine is unaffected by varying levels of iron and 2-oxoglutarate . Biochem. Biophys. Res. Commun.439 ( 4 ), 522 – 527 ( 2013 ).
  • Ponnaluri VKC , MaciejewskiJP , MukherjiM . A mechanistic overview of TET-mediated 5-methylcytosine oxidation . Biochem. Biophys. Res. Commun.436 ( 2 ), 115 – 120 ( 2013 ).
  • Mastroeni D , GroverA , DelvauxE , WhitesideC , ColemanPD , RogersJ . Epigenetic changes in Alzheimer’s disease: decrements in DNA methylation . Neurobiol. Aging31 ( 12 ), 2025 – 2037 ( 2010 ).
  • Volkmar M , DedeurwaerderS , CunhaDAet al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients . EMBO J.31 ( 6 ), 1405 – 1426 ( 2012 ).
  • Cheishvili D , StefanskaB , YiCet al. A common promoter hypomethylation signature in invasive breast, liver and prostate cancer cell lines reveals novel targets involved in cancer invasiveness . Oncotarget6 ( 32 ), 33253 – 33268 ( 2015 ).
  • Leodolter A , AlonsoS , GonzálezBet al. Somatic DNA hypomethylation in H. pylori-associated high-risk gastritis and gastric cancer: enhanced somatic hypomethylation associates with advanced stage cancer . Clin. Transl. Gastroenterol.6 , e85 ( 2015 ).
  • Gravina GL , RanieriG , MuziPet al. Increased levels of DNA methyltransferases are associated with the tumorigenic capacity of prostate cancer cells . Oncol. Rep.29 ( 3 ), 1189 – 1195 ( 2013 ).
  • Avila MA , CorralesFJ , RuizFet al. Specific interaction of methionine adenosyltransferase with free radicals . BioFactors8 ( 1 ), 27 – 32 ( 1998 ).
  • Pajares MA , DuránC , CorralesF , PliegoMM , MatoJM . Modulation of rat liver S-adenosylmethionine synthetase activity by glutathione . J. Biol. Chem.267 ( 25 ), 17598 – 17605 ( 1992 ).
  • Jarrett JT , HooverDM , LudwigML , MatthewsRG . The mechanism of adenosylmethionine-dependent activation of methionine synthase: a rapid kinetic analysis of Intermediates in reductive methylation of Cob(II)alamin enzyme . Biochemistry (Mosc.).37 ( 36 ), 12649 – 12658 ( 1998 ).
  • Lu SC . Regulation of glutathione synthesis . Mol. Aspects Med.30 ( 1 ), 42 – 59 ( 2009 ).
  • Cyr AR , DomannFE . The redox basis of epigenetic modifications: from mechanisms to functional consequences . Antioxid. Redox Signal.15 ( 2 ), 551 – 589 ( 2011 ).
  • Mosharov E , CranfordMR , BanerjeeR . The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes . Biochemistry (Mosc.).39 ( 42 ), 13005 – 13011 ( 2000 ).
  • Kloypan C , Srisa-ArtM , MutiranguraA , BoonlaC . LINE-1 hypomethylation induced by reactive oxygen species is mediated via depletion of S-adenosylmethionine . Cell Biochem. Funct.33 ( 6 ), 375 – 384 ( 2015 ).
  • Lertratanangkoon K , WuCJ , SavarajN , ThomasML . Alterations of DNA methylation by glutathione depletion . Cancer Lett.120 ( 2 ), 149 – 156 ( 1997 ).
  • Valinluck V , SowersLC . Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1 . Cancer Res.67 ( 3 ), 946 – 950 ( 2007 ).
  • Niu Y , DesMaraisTL , TongZ , YaoY , CostaM . Oxidative stress alters global histone modification and DNA methylation . Free Radic. Biol. Med.82 , 22 – 28 ( 2015 ).
  • Delatte B , JeschkeJ , DefranceMet al. Genome-wide hydroxymethylcytosine pattern changes in response to oxidative stress . Sci. Rep.5 , 12714 ( 2015 ).
  • Xin Y-J , YuanB , YuBet al. Tet1-mediated DNA demethylation regulates neuronal cell death induced by oxidative stress . Sci. Rep.5 , 7645 ( 2015 ).
  • Xiao M , YangH , XuWet al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors . Genes Dev.26 ( 12 ), 1326 – 1338 ( 2012 ).
  • Frizzell N , ThomasSA , CarsonJA , BaynesJW . Mitochondrial stress causes increased succination of proteins in adipocytes in response to glucotoxicity . Biochem. J.445 ( 2 ), 247 – 254 ( 2012 ).
  • Tretter L , Adam-ViziV . Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress . J. Neurosci.20 ( 24 ), 8972 – 8979 ( 2000 ).
  • O’Hagan HM , WangW , SenSet al. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and Polycomb members to promoter CpG islands . Cancer Cell20 ( 5 ), 606 – 619 ( 2011 ).
  • Ding N , BonhamEM , HannonBE , AmickTR , BaylinSB , O’HaganHM . Mismatch repair proteins recruit DNA methyltransferase 1 to sites of oxidative DNA damage . J. Mol. Cell Biol. doi:10.1093/jmcb/mjv050 ( 2015 ) ( Epub ahead of print ).
  • Kooistra SM , HelinK . Molecular mechanisms and potential functions of histone demethylases . Nat. Rev. Mol. Cell Biol.13 ( 5 ), 297 – 311 ( 2012 ).
  • Sullivan LB , Martinez-GarciaE , NguyenHet al. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling . Mol. Cell51 ( 2 ), 236 – 248 ( 2013 ).
  • Hickok JR , VasudevanD , AntholineWE , ThomasDD . Nitric oxide modifies global histone methylation by inhibiting Jumonji C domain-containing demethylases . J. Biol. Chem.288 ( 22 ), 16004 – 16015 ( 2013 ).
  • Hitchler MJ , DomannFE . Redox regulation of the epigenetic landscape in cancer: a role for metabolic reprogramming in remodeling the epigenome . Free Radic. Biol. Med.53 ( 11 ), 2178 – 2187 ( 2012 ).
  • Kera Y , KatohY , OhtaM , MatsumotoM , Takano-YamamotoT , IgarashiK . Methionine adenosyltransferase II-dependent histone H3K9 methylation at the COX-2 gene locus . J. Biol. Chem.288 ( 19 ), 13592 – 13601 ( 2013 ).
  • de Ruijter AJM , Gennip vanAH , CaronHN , KempS , Kuilenburg vanABP . Histone deacetylases (HDACs): characterization of the classical HDAC family . Biochem. J.370 ( 3 ), 737 – 749 ( 2003 ).
  • Marks PA , RifkindRA , RichonVM , BreslowR , MillerT , KellyWK . Histone deacetylases and cancer: causes and therapies . Nat. Rev. Cancer1 ( 3 ), 194 – 202 ( 2001 ).
  • Delcuve GP , KhanDH , DavieJR . Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors . Clin. Epigenetics4 ( 1 ), 5 ( 2012 ).
  • Lombardi PM , ColeKE , DowlingDP , ChristiansonDW . Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes . Curr. Opin. Struct. Biol.21 ( 6 ), 735 – 743 ( 2011 ).
  • Khan O , La ThangueNB . HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications . Immunol. Cell Biol.90 ( 1 ), 85 – 94 ( 2012 ).
  • Tanny JC , MoazedD . Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: evidence for acetyl transfer from substrate to an NAD breakdown product . Proc. Natl Acad. Sci. USA98 ( 2 ), 415 – 420 ( 2001 ).
  • Tanner KG , LandryJ , SternglanzR , DenuJM . Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose . Proc. Natl Acad. Sci. USA97 ( 26 ), 14178 – 14182 ( 2000 ).
  • Moodie FM , MarwickJA , AndersonCSet al. Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-κB activation and proinflammatory cytokine release in alveolar epithelial cells . FASEB J.18 ( 15 ), 1897 – 1899 ( 2004 ).
  • Doyle K , FitzpatrickFA . Redox signaling, alkylation (carbonylation) of conserved cysteines inactivates class I histone deacetylases 1, 2, and 3 and antagonizes their transcriptional repressor function . J. Biol. Chem.285 ( 23 ), 17417 – 17424 ( 2010 ).
  • Kornberg MD , SenN , HaraMRet al. GAPDH mediates nitrosylation of nuclear proteins . Nat. Cell Biol.12 ( 11 ), 1094 – 1100 ( 2010 ).
  • Nott A , WatsonPM , RobinsonJD , CrepaldiL , RiccioA . S-nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons . Nature455 ( 7211 ), 411 – 415 ( 2008 ).
  • Colussi C , MozzettaC , GurtnerAet al. HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment . Proc. Natl Acad. Sci. USA105 ( 49 ), 19183 – 19187 ( 2008 ).
  • Bhaskara S , KnutsonSK , JiangGet al. Hdac3 is essential for the maintenance of chromatin structure and genome stability . Cancer Cell18 ( 5 ), 436 – 447 ( 2010 ).
  • Dovey OM , FosterCT , ConteNet al. Histone deacetylase 1 and 2 are essential for normal T-cell development and genomic stability in mice . Blood121 ( 8 ), 1335 – 1344 ( 2013 ).
  • Heideman MR , WiltingRH , YanoverEet al. Dosage-dependent tumor suppression by histone deacetylases 1 and 2 through regulation of c-Myc collaborating genes and p53 function . Blood121 ( 11 ), 2038 – 2050 ( 2013 ).
  • Santoro F , BotrugnoOA , ZuffoRDet al. A dual role for Hdac1: oncosuppressor in tumorigenesis, oncogene in tumor maintenance . Blood121 ( 17 ), 3459 – 3468 ( 2013 ).
  • Shimazu T , HirscheyMD , NewmanJet al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor . Science339 ( 6116 ), 211 – 214 ( 2013 ).
  • Caito S , RajendrasozhanS , CookSet al. SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress . FASEB J.24 ( 9 ), 3145 – 3159 ( 2010 ).
  • Shao D , FryJL , HanJet al. A redox-resistant sirtuin-1 mutant protects against hepatic metabolic and oxidant stress . J. Biol. Chem.289 ( 11 ), 7293 – 7306 ( 2014 ).
  • Yao H , ChungS , HwangJ-Wet al. SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice . J. Clin. Invest.122 ( 6 ), 2032 – 2045 ( 2012 ).
  • Ota H , EtoM , KanoMRet al. Cilostazol Inhibits oxidative stress–induced premature senescence via upregulation of Sirt1 in human endothelial cells . Arterioscler. Thromb. Vasc. Biol.28 ( 9 ), 1634 – 1639 ( 2008 ).
  • Yang S-R , WrightJ , BauterM , SeweryniakK , KodeA , RahmanI . Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-kappaB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging . Am. J. Physiol. Lung Cell Mol. Physiol.292 ( 2 ), L567 – L576 ( 2007 ).
  • Fritz KS , GalliganJJ , SmathersRLet al. 4-Hydroxynonenal inhibits SIRT3 via thiol-specific modification . Chem. Res. Toxicol.24 ( 5 ), 651 – 662 ( 2011 ).
  • Iwahara T , BonasioR , NarendraV , ReinbergD . SIRT3 functions in the nucleus in the control of stress-related gene expression . Mol. Cell Biol.32 ( 24 ), 5022 – 5034 ( 2012 ).
  • Hu S , LiuH , HaYet al. Posttranslational modification of Sirt6 activity by peroxynitrite . Free Radic. Biol. Med.79 , 176 – 185 ( 2015 ).
  • Sebastián C , ZwaansBMM , SilbermanDMet al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism . Cell151 ( 6 ), 1185 – 1199 ( 2012 ).
  • Liu Y , Hernández-OchoaEO , RandallWR , SchneiderMF . NOX2-dependent ROS is required for HDAC5 nuclear efflux and contributes to HDAC4 nuclear efflux during intense repetitive activity of fast skeletal muscle fibers . Am. J. Physiol. Cell Physiol.303 ( 3 ), C334 – C347 ( 2012 ).
  • Lu J , McKinseyTA , NicolRL , OlsonEN . Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases . Proc. Natl Acad. Sci. USA97 ( 8 ), 4070 – 4075 ( 2000 ).
  • Hwang J , YaoH , CaitoS , SundarIK , RahmanI . Redox regulation of SIRT1 in inflammation and cellular senescence . Free Radic. Biol. Med.61 , 95 – 110 ( 2013 ).
  • Agudelo M , GandhiN , SaiyedZet al. Effects of alcohol on histone deacetylase 2 (HDAC2) and the neuroprotective role of trichostatin A (TSA) . Alcohol. Clin. Exp. Res.35 ( 8 ), 1550 – 1556 ( 2011 ).
  • Castonguay Z , AugerC , ThomasSC , ChahmaM’hamed , AppannaVD . Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes . Biochem. Biophys. Res. Commun.454 ( 1 ), 172 – 177 ( 2014 ).
  • Banerjee T , ChakravartiD . A peek into the complex realm of histone phosphorylation . Mol. Cell Biol.31 ( 24 ), 4858 – 4873 ( 2011 ).
  • Ye B , HouN , XiaoL , XuY , XuH , LiF . Dynamic monitoring of oxidative DNA double-strand break and repair in cardiomyocytes . Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol.25 ( 2 ), 93 – 100 ( 2016 ).
  • Mah L-J , El-OstaA , KaragiannisTC . gammaH2AX: a sensitive molecular marker of DNA damage and repair . Leukemia24 ( 4 ), 679 – 686 ( 2010 ).
  • Katsube T , MoriM , TsujiHet al. Most hydrogen peroxide-induced histone H2AX phosphorylation is mediated by ATR and is not dependent on DNA double-strand breaks . J. Biochem.156 ( 2 ), 85 – 95 ( 2014 ).
  • Marwick JA , TudorC , KhorasaniN , MichaeloudesC , BhavsarPK , ChungKF . Oxidants induce a corticosteroid-insensitive phosphorylation of histone 3 at serine 10 in monocytes . PLoS ONE10 ( 4 ), e0124961 ( 2015 ).
  • Jeong M-W , KangT-H , KimW , ChoiYH , KimK-T . Mitogen-activated protein kinase phosphatase 2 regulates histone H3 phosphorylation via interaction with vaccinia-related kinase 1 . Mol. Biol. Cell24 ( 3 ), 373 – 384 ( 2013 ).
  • Rusnak F , ReiterT . Sensing electrons: protein phosphatase redox regulation . Trends Biochem. Sci.25 ( 11 ), 527 – 529 ( 2000 ).
  • Iyengar S , FarnhamPJ . KAP1 protein: an enigmatic master regulator of the genome . J. Biol. Chem.286 ( 30 ), 26267 – 26276 ( 2011 ).
  • Wei N , ShiY , TruongLNet al. Oxidative stress diverts tRNA synthetase to nucleus for protection against DNA damage . Mol. Cell56 ( 2 ), 323 – 332 ( 2014 ).
  • Higo S , AsanoY , KatoHet al. Isoform-specific intermolecular disulfide bond formation of heterochromatin protein 1 (HP1) . J. Biol. Chem.285 ( 41 ), 31337 – 31347 ( 2010 ).
  • Whitelaw NC , ChongS , MorganDKet al. Reduced levels of two modifiers of epigenetic gene silencing, Dnmt3a and Trim28, cause increased phenotypic noise . Genome Biol.11 ( 11 ), R111 ( 2010 ).
  • Štros M . HMGB proteins: interactions with DNA and chromatin . Biochim. Biophys. Acta BBA1799 ( 1 ), 101 – 113 ( 2010 ).
  • Polanská E , Pospíšilovአ, ŠtrosM . Binding of histone H1 to DNA is differentially modulated by redox state of HMGB1 . PLoS ONE9 ( 2 ), e89070 ( 2014 ).
  • Fiume R , Stijf-BultsmaY , ShahZHet al. PIP4K and the role of nuclear phosphoinositides in tumour suppression . Biochim. Biophys. Acta1851 ( 6 ), 898 – 910 ( 2015 ).
  • Keune jan W , BultsmaY , SommerL , JonesD , DivechaN . Phosphoinositide signalling in the nucleus . Adv. Enzyme Regul.51 ( 1 ), 91 – 99 ( 2011 ).
  • Jones DR , BultsmaY , KeuneW-Jet al. Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kbeta . Mol. Cell23 ( 5 ), 685 – 695 ( 2006 ).
  • Attia SM , AhmadSF , HarisaGI , MansourAM , El SayedESM , BakheetSA . Wogonin attenuates etoposide-induced oxidative DNA damage and apoptosis via suppression of oxidative DNA stress and modulation of OGG1 expression . Food Chem. Toxicol.59 , 724 – 730 ( 2013 ).
  • Gozani O , KarumanP , JonesDRet al. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor . Cell114 ( 1 ), 99 – 111 ( 2003 ).
  • Pedeux R , SenguptaS , ShenJCet al. ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation . Mol. Cell Biol.25 ( 15 ), 6639 – 6648 ( 2005 ).
  • Doyon Y , CayrouC , UllahMet al. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation . Mol. Cell21 ( 1 ), 51 – 64 ( 2006 ).
  • Bua DJ , MartinGM , BindaO , GozaniO . Nuclear phosphatidylinositol-5-phosphate regulates ING2 stability at discrete chromatin targets in response to DNA damage . Sci. Rep.3 , 2137 ( 2013 ).
  • Stijf-Bultsma Y , SommerL , TauberMet al. The basal transcription complex component TAF3 transduces changes in nuclear phosphoinositides into transcriptional output . Mol. Cell58 ( 3 ), 453 – 467 ( 2015 ).
  • Bronner C . Control of DNMT1 abundance in epigenetic inheritance by acetylation, ubiquitylation, and the histone code . Sci. Signal.4 ( 157 ), pe3 ( 2011 ).
  • Gelato KA , TauberM , OngMSet al. Accessibility of different histone H3-binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5-phosphate . Mol. Cell54 ( 6 ), 905 – 919 ( 2014 ).
  • Montero D , WaltherG , StehouwerCDA , HoubenAJHM , BeckmanJA , VinetA . Effect of antioxidant vitamin supplementation on endothelial function in type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials . Obes. Rev.15 ( 2 ), 107 – 116 ( 2014 ).
  • Rafieian-Kopaie M , NasriH . On the Occasion of World Cancer Day 2015; the possibility of cancer prevention or treatment with antioxidants: the ongoing cancer prevention researches . Int. J. Prev. Med.6 , 108 ( 2015 ).
  • Galasko DR , PeskindE , ClarkCMet al. Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures . Arch. Neurol.69 ( 7 ), 836 – 841 ( 2012 ).
  • Harrison FE , AllardJ , BixlerRet al. Antioxidants and cognitive training interact to affect oxidative stress and memory in APP/PSEN1 mice . Nutr. Neurosci.12 ( 5 ), 203 – 218 ( 2009 ).
  • Jin H , KanthasamyA , GhoshA , AnantharamV , KalyanaramanB , KanthasamyAG . Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes . Biochim. Biophys. Acta1842 ( 8 ), 1282 – 1294 ( 2014 ).