14,091
Views
0
CrossRef citations to date
0
Altmetric
Review

The Interplay between DNA Methylation, Folate and Neurocognitive Development

, , , , , , & show all
Pages 863-879 | Received 06 Jan 2016, Accepted 20 Mar 2016, Published online: 20 Jun 2016

References

  • Kriaucionis S , HeintzN . The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain . Science324 ( 5929 ), 929 – 930 ( 2009 ).
  • Tahiliani M , KohKP , ShenYet al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 . Science324 ( 5929 ), 930 – 935 ( 2009 ).
  • Lister R , MukamelE , NeryJRet al. Global epigenomic reconfiguration during mammalian brain development . Science341 ( 6146 ), 1237905 ( 2013 ).
  • Barker DJP . The developmental origins of chronic adult disease . Acta Paediatr. Suppl.93 ( 446 ), 26 – 33 ( 2004 ).
  • Heijmans BT , TobiEW , SteinADet al. Persistent epigenetic differences associated with prenatal exposure to famine in humans . Proc. Natl Acad. Sci. USA105 ( 44 ), 17046 – 17049 ( 2008 ).
  • Barker D . Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales . Lancet327 ( 8489 ), 1077 – 1081 ( 1986 ).
  • Tobi EW , GoemanJJ , MonajemiRet al. DNA methylation signatures link prenatal famine exposure to growth and metabolism . Nat. Commun.5 , 5592 ( 2014 ).
  • McNulty B , PentievaK , MarshallBet al. Womens compliance with current folic acid recommendations and achievement of optimal vitamin status for preventing neural tube defects . Hum. Reprod.26 ( 6 ), 1530 – 1536 ( 2011 ).
  • Yiu TT , LiW . Pediatric cancer epigenome and the influence of folate . Epigenomics7 ( 6 ), 961 – 973 ( 2015 ).
  • Kirkbride JB , SusserE , KundakovicMet al. Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects? Epigenomics 4 ( 3 ), 303 – 315 ( 2012 ).
  • Copp AJ , GreeneNDE . Neural tube defects-disorders of neurulation and related embryonic processes . Wiley Interdiscip. Rev. Dev. Biol.2 ( 2 ), 213 – 227 ( 2013 ).
  • Eskes TK . Open or closed? A world of difference: a history of homocysteine research . Nutr. Rev.56 ( 8 ), 236 – 244 ( 1998 ).
  • Czeizel AE , DudásI . Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation . N. Engl. J. Med.327 ( 26 ), 1832 – 1835 ( 1992 ).
  • Smithells RW , SheppardS , SchorahCJ . Vitamin deficiencies and neural tube defects . Arch. Dis. Child.51 ( 12 ), 944 – 950 ( 1976 ).
  • MRC Vitamin Study Research Group . Prevention of neural tube defects: results of the Medical Research Council Vitamin Study . Lancet338 ( 8760 ), 131 – 137 ( 1991 ).
  • Talaulikar VS , ArulkumaranS . Folic acid in obstetric practice: a review . Obstet. Gynecol. Surv.66 ( 4 ), 240 – 247 ( 2011 ).
  • Cheschier N , ACOG Committee on Practice Bulletins-Obstetrics . American College of Obstetricians and Gynecologists. Neural tube defects . Int. J. Gynaecol. Obstet.83 ( 1 ), 123 – 133 ( 2003 ).
  • Crider KS , BaileyLB , BerryRJ . Folic acid food fortification-its history, effect, concerns, and future directions . Nutrients3 ( 3 ), 370 – 384 ( 2011 ).
  • Collins P . Development of the nervous system . In : Gray’s Anatomy . StandingS ( Ed. ). Elsevier , Edinburgh, Scotland , 241 – 274 ( 2005 ).
  • Gilbert SF . Developmental Biology (6th Edition) . Sinauer Associates , MA, USA , 271 ( 2000 ).
  • Botto LD , YangQ . 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review . Am. J. Epidemiol.151 ( 9 ), 862 – 877 ( 2000 ).
  • Piedrahita JA , OetamaB , BennettGDet al. Mice lacking the folic acid-binding protein Folbp1 are defective in early embryonic development . Nat. Genet.23 ( 2 ), 228 – 232 ( 1999 ).
  • Spiegelstein O , MitchellLE , MerriweatherMYet al. Embryonic development of folate binding protein-1 (Folbp1) knockout mice: Effects of the chemical form, dose and timing of maternal folate supplementation . Dev. Dyn.231 ( 1 ), 221 – 231 ( 2004 ).
  • Barber RC , LammerEJ , ShawGMet al. The role of folate transport and metabolism in neural tube defect risk . Mol. Genet. Metab.66 ( 1 ), 1 – 9 ( 1999 ).
  • Fleming A , CoppAJ . Embryonic folate metabolism and mouse neural tube defects . Science280 ( 5372 ), 2107 – 2109 ( 1998 ).
  • Beaudin AE , AbarinovEV , NodenDMet al. Shmt1 and de novo thymidylate biosynthesis underlie folate-responsive neural tube defects in mice . Am. J. Clin. Nutr.93 ( 4 ), 789 – 798 ( 2011 ).
  • Beaudin AE , AbarinovEV , MalyshevaOet al. Dietary folate, but not choline, modifies neural tube defect risk in Shmt1 knockout mice . Am. J. Clin. Nutr.95 ( 1 ), 109 – 114 ( 2012 ).
  • Christensen KE , DengL , LeungKY . A novel mouse model for genetic variation in 10-formyltetrahydrofolate synthetase exhibits disturbed purine synthesis with impacts on pregnancy and embryonic development . Hum. Mol. Genet.22 ( 8 ), 3705 – 3719 ( 2013 ).
  • Carroll N , PangilinanF , MolloyAMet al. Analysis of the MTHFD1 promoter and risk of neural tube defects . Hum. Genet.125 ( 3 ), 247 – 256 ( 2009 ).
  • Ivanova E , ChenJH , Segonds-PichonAet al. DNA methylation at differentially methylated regions of imprinted genes is resistant to developmental programming by maternal nutrition . Epigenetics7 ( 10 ), 1200 – 1210 ( 2012 ).
  • Dunlevy LPE , BurrenKA , MillsKet al. Integrity of the methylation cycle is essential for mammalian neural tube closure . Birth Defects Res. Part A Clin. Mol. Teratol.76 ( 7 ), 544 – 552 ( 2006 ).
  • Moephuli SR , KleinNW , BaldwinMTet al. Effects of methionine on the cytoplasmic distribution of actin and tubulin during neural tube closure in rat embryos . Proc. Natl Acad. Sci. USA94 ( 2 ), 543 – 548 ( 1997 ).
  • Afman LA , BlomHJ , DrittijMJet al. Inhibition of transmethylation disturbs neurulation in chick embryos . Dev. Brain Res.158 ( 1–2 ), 59 – 65 ( 2005 ).
  • Okano M , BellDW , HaberDAet al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development . Cell99 ( 3 ), 247 – 257 ( 1999 ).
  • Wang L , WangF , GuanJet al. Relation between hypomethylation of long interspersed nucleotide elements and risk of neural tube defects . Am. J. Clin. Nutr.91 ( 5 ), 1359 – 1367 ( 2010 ).
  • Chang H , ZhangT , ZhangZet al. Tissue-specific distribution of aberrant DNA methylation associated with maternal low-folate status in human neural tube defects . J. Nutr. Biochem.22 ( 12 ), 1172 – 1177 ( 2011 ).
  • Reynolds E . Vitamin B12, folic acid, and the nervous system . Lancet Neurol.5 ( 11 ), 949 – 960 ( 2006 ).
  • Georgieff MK . Nutrition and the developing brain: nutrient priorities and measurement . Am. J. Clin. Nutr.85 ( 2 ), S614 – S620 ( 2007 ).
  • Anjos T , AltmäeS , EmmettPet al. Nutrition and neurodevelopment in children: focus on NUTRIMENTHE project . Eur. J. Nutr.52 ( 8 ), 1825 – 1842 ( 2013 ).
  • Akchiche N , Bossenmeyer-PouriéC , KerekRet al. Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells . FASEB J.26 ( 10 ), 3980 – 3992 ( 2012 ).
  • Kruman II , MoutonPR , EmokpaeRet al. Folate deficiency inhibits proliferation of adult hippocampal progenitors . Neuroreport16 ( 10 ), 1055 – 1059 ( 2005 ).
  • Blaise SA , NédélecE , SchroederHet al. Gestational vitamin B deficiency leads to homocysteine-associated brain apoptosis and alters neurobehavioral development in rats . Am. J. Pathol.170 ( 2 ), 667 – 679 ( 2007 ).
  • Craciunescu CN , BrownEC , MarM-Het al. Folic acid deficiency during late gestation decreases progenitor cell proliferation and increases apoptosis in fetal mouse brain . J. Nutr.134 ( 1 ), 162 – 166 ( 2004 ).
  • Barua S , KuizonS , ChadmanKKet al. Single-base resolution of mouse offspring brain methylome reveals epigenome modifications caused by gestational folic acid . Epigenetics Chromatin.7 ( 1 ), 3 ( 2014 ).
  • Julvez J , FortunyJ , MendezMet al. Maternal use of folic acid supplements during pregnancy and four-year-old neurodevelopment in a population-based birth cohort . Paediatr. Perinat. Epidemiol.23 ( 3 ), 199 – 206 ( 2009 ).
  • Phase III , KrishnaveniGV , SrinivasanKet al. Higher maternal plasma folate but not vitamin B-12 concentrations during pregnancy are associated with better cognitive function scores in 9-to-10 year-old children in South India . J. Nutr.140 ( 5 ), 1014 – 1022 ( 2010 ).
  • Chatzi L , PapadopoulouE , KoutraKet al. Effect of high doses of folic acid supplementation in early pregnancy on child neurodevelopment at 18 months of age: the mother–child cohort “Rhea” study in Crete, Greece . Public Health Nutr.15 ( 09 ), 1728 – 1736 ( 2012 ).
  • Roth C , MagnusP , Schj⊘lbergSet al. Folic acid supplements in pregnancy and severe language delay in children . Obstet. Gynecol. Surv.67 ( 2 ), 79 – 80 ( 2012 ).
  • Villamor E , Rifas-ShimanSL , GillmanMWet al. Maternal intake of methyl-donor nutrients and child cognition at 3 years of age . Paediatr. Perinat. Epidemiol.26 ( 4 ), 328 – 335 ( 2012 ).
  • De Graaf-Peters VB , Hadders-AlgraM . Ontogeny of the human central nervous system: what is happening when?Early Hum. Dev.82 ( 4 ), 257 – 266 ( 2006 ).
  • Gross RL , NewbernePM , ReidJVO . Adverse effects on infant development associated with maternal folic acid deficiency . Nutr. Rep. Int.10 ( 5 ), 241 – 248 ( 1974 ).
  • Pentieva K , McGarelC , McNultyBet al. Effect of folic acid supplementation during pregnancy on growth and cognitive development of the offspring: a pilot follow-up investigation of children of FASSTT study participants . Proc. Nutr. Soc. doi:10.1017/S0029665112001966 ( 2012 ) ( Epub ahead of print ).
  • Del Río Garcia C , Torres-SánchezL , ChenJet al. Maternal MTHFR 677C>T genotype and dietary intake of folate and vitamin B(12): their impact on child neurodevelopment . Nutr. Neurosci.12 ( 1 ), 13 – 20 ( 2009 ).
  • Roza SJ , van Batenburg-EddesT , SteegersEAPet al. Maternal folic acid supplement use in early pregnancy and child behavioural problems: The Generation R Study . Br. J. Nutr.103 ( 3 ), 445 – 452 ( 2010 ).
  • Steenweg-de Graaff J , RozaSJ , SteegersEAet al. Maternal folate status in early pregnancy and child emotional and behavioral problems: the Generation R Study . Am. J. Clin. Nutr.95 ( 6 ), 1413 – 1421 ( 2012 ).
  • Surén P , RothC , BresnahanMet al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children . JAMA309 ( 6 ), 570 – 577 ( 2013 ).
  • Gillberg C , OhlsonVA , WahlströmJ , SteffenburgS , BlixK . Monozygotic female twins with autism and the fragile-X syndrome (AFRAX) . J. Child Psychol. Psychiatry29 ( 4 ), 447 – 451 ( 1988 ).
  • Deth R , MuratoreC , BenzecryJet al. How environmental and genetic factors combine to cause autism: a redox/methylation hypothesis . Neurotoxicology29 ( 1 ), 190 – 201 ( 2008 ).
  • Van Allen MI , KalousekDK , ChernoffGFet al. Evidence for multi-site closure of the neural tube in humans . Am. J. Med. Genet.47 , 723 – 743 ( 1993 ).
  • Moore KL , PersaudTVN . Before We Are Born: Essentials of Embryology and Birth Defects . Elsevier , Philidelphia, USA ( 2012 ).
  • Rakic P . Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition . Science183 ( 4123 ), 425 – 427 ( 1974 ).
  • Wen L , LiXX , YanLet al. Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain . Genome Biol.15 ( 3 ), R49 ( 2014 ).
  • Smale ST . Pioneer factors in embryonic stem cells and differentiation . Curr. Opin. Genet. Dev.20 ( 5 ), 519 – 526 ( 2010 ).
  • Feldmann A , IvanekR , MurrRet al. Transcription factor occupancy can mediate active turnover of DNA methylation at regulatory regions . PLoS Genet.9 ( 12 ), e1003994 ( 2013 ).
  • Zaret KS , CarrollJS . Pioneer transcription factors: establishing competence for gene expression . Genes Dev.25 ( 21 ), 2227 – 2241 ( 2011 ).
  • Wheldon LM , AbakirA , FerjentsikZet al. Transient accumulation of 5-carboxylcytosine indicates involvement of active demethylation in lineage specification of neural stem cells . Cell Rep.7 ( 5 ), 1353 – 1361 ( 2014 ).
  • Zhang RR , CuiQY , MuraiKet al. Tet1 regulates adult hippocampal neurogenesis and cognition . Cell Stem Cell.13 ( 2 ), 237 – 245 ( 2013 ).
  • Jin SG , WuX , LiAXet al. Genomic mapping of 5-hydroxymethylcytosine in the human brain . Nucleic Acids Res.39 ( 12 ), 5015 – 5024 ( 2011 ).
  • Hahn MA , QiuR , WuXet al. Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis . Cell Rep.3 ( 2 ), 291 – 300 ( 2013 ).
  • Hahn MA , SzaboPE , PfeiferGPet al. 5-Hydroxymethylcytosine: a stable or transient DNA modification? Genomics 10 ( 5 ), 314 – 323 ( 2014 ).
  • Iurlaro M , FiczG , OxleyDet al. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation . Genome Biol.14 ( 10 ), R119 ( 2013 ).
  • Spruijt CG , GnerlichF , SmitsAHet al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives . Cell152 ( 5 ), 1146 – 1159 ( 2013 ).
  • Lister R , MukamelEA , NeryJRet al. Global epigenomic reconfiguration during mammalian brain development . Science341 ( 6146 ), 1237905 ( 2013 ).
  • Feng J , ZhouY , CampbellSLet al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons . Nat. Neurosci.13 ( 4 ), 423 – 430 ( 2010 ).
  • LaPlant Q , VialouV , CovingtonHEet al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens . Nat. Neurosci.13 ( 9 ), 1137 – 1143 ( 2010 ).
  • Chen L , ChenK , LaveryLAet al. MeCP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome . Proc. Natl Acad. Sci. USA112 ( 17 ), 201505909 ( 2015 ).
  • Gabel HW , KindeB , StroudHet al. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome . Nature522 ( 7554 ), 89 – 93 ( 2015 ).
  • Thompson R , NelsonC . Developmental science and the media: early brain development . Am. Psychol.56 ( 1 ), 5 – 15 ( 2001 ).
  • Peter RH . Synaptic density in human frontal cortex – developmental changes and effects of aging . Brain Res.163 ( 2 ), 195 – 205 ( 1979 ).
  • Kandel ER , JessellTM , SanesJR . Sensory experience and the fine-tuning of synaptic connections . In : Principles of Neural Science . KandelER , SchwartzJH , JessellTM ( Eds ). McGraw-Hill , New York, USA , 1115 – 1130 ( 2000 ).
  • Penfield W , RasmussenT . The cerebral cortex of man. A clinical study of localization of function . Acad. Med.25 , 375 ( 1950 ).
  • Morris JA , JordanCL , BreedloveSM . Sexual differentiation of the vertebrate nervous system . Nat. Neurosci.7 ( 10 ), 1034 – 1039 ( 2004 ).
  • De Jager CA , DyeL , De BruinEet al. Cognitive function: criteria for validation and selection of cognitive tests for investigating the effects of foods and nutrients . Nutr. Rev.72 ( 3 ), 162 – 179 ( 2014 ).
  • Sizonenko SV , BabiloniC , de BruinEAet al. Brain imaging and human nutrition: which measures to use in intervention studies? Br. J. Nutr. 110 ( Suppl. ), S1 – S30 ( 2013 ).
  • Stufflebeam SM , RosenBR . Mapping cognitive function . Neuroimaging Clin. N. Am.17 ( 4 ), 469 – 484 , vii–ix ( 2007 ).
  • Wilkinson DG , BhattS , CookMet al. Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain . Nature341 ( 6241 ), 405 – 409 ( 1989 ).
  • Bocker MT , TuortoF , RaddatzGet al. Hydroxylation of 5-methylcytosine by TET2 maintains the active state of the mammalian HOXA cluster . Nat. Commun.3 , 818 ( 2012 ).
  • Karpova NN . Role of BDNF epigenetics in activity-dependent neuronal plasticity . Neuropharmacology76 ( Pt C ), 709 – 718 ( 2014 ).
  • Suzuki MM , BirdA . DNA methylation landscapes: provocative insights from epigenomics . Nat. Rev. Genet.9 ( 6 ), 465 – 476 ( 2008 ).
  • Martinowich K , HattoriD , WuHet al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation . Science ( 80 ) 302 ( 5646 ), 890 – 893 ( 2003 ).
  • Chen WG , ChangQ , LinYet al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2 . Science302 ( 5646 ), 885 – 889 ( 2003 ).
  • Chen WV , AlvarezFJ , LefebvreJLet al. Functional significance of isoform diversification in the protocadherin gamma gene cluster . Neuron75 ( 3 ), 402 – 409 ( 2012 ).
  • Kawaguchi M , ToyamaT , KanekoR , HirayamaT , KawamuraY , YagiT . Relationship between DNA methylation states and transcription of individual isoforms encoded by the protocadherin-α gene cluster . J. Biol. Chem.283 , 1064 – 1075 ( 2008 ).
  • Bartolomei MS , Ferguson-SmithAC . Mammalian genomic imprinting . Cold Spring Harb. Perspect. Biol.3 ( 7 ), 1 – 17 ( 2011 ).
  • Charalambous M , FerronSR , da RochaSTet al. Imprinted gene dosage is critical for the transition to independent life . Cell Metab.15 , 209 – 221 ( 2012 ).
  • Bourc’his D , XuGL , LinCSet al. Dnmt3L and the establishment of maternal genomic imprints . Science294 ( 5551 ), 2536 – 2539 ( 2001 ).
  • Hata K , OkanoM , LeiHet al. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice . Development129 ( 8 ), 1983 – 1993 ( 2002 ).
  • Reik W , WalterJ . Genomic imprinting: parental influence on the genome . Nat. Rev. Genet.2 ( 1 ), 21 – 32 ( 2001 ).
  • Edwards CA , Ferguson-SmithAC . Mechanisms regulating imprinted genes in clusters . Curr. Opin. Cell Biol.19 ( 3 ), 281 – 289 ( 2007 ).
  • Tucker KL , BeardC , DausmanJet al. Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes . Genes Dev.10 ( 8 ), 1008 – 1020 ( 1996 ).
  • Cooper WN , KhulanB , OwensSet al. DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: results of a pilot randomized controlled trial . FASEB J.26 ( 5 ), 1782 – 1790 ( 2012 ).
  • Tobi EW , LumeyLH , TalensRPet al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific . Hum. Mol. Genet.18 ( 21 ), 4046 – 4053 ( 2009 ).
  • Keverne EB . Genomic imprinting in the brain . Curr. Opin. Neurobiol.7 ( 4 ), 463 – 468 ( 1997 ).
  • Horsthemke B , BuitingK . Imprinting defects on human chromosome 15 . Cytogenet. Genome Res.113 ( 1–4 ), 292 – 299 ( 2006 ).
  • Relkovic D , DoeCM , HumbyTet al. Behavioural and cognitive abnormalities in an imprinting centre deletion mouse model for Prader–Willi syndrome . Eur. J. Neurosci.31 ( 1 ), 156 – 164 ( 2010 ).
  • Hirasawa R , FeilR . Genomic imprinting and human disease . Essays Biochem.48 , 187 – 200 ( 2010 ).
  • Goto K , NumataM , KomuraJI , OnoT , BestorTH , KondoH . Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice . Differentiation56 , 39 – 44 ( 1994 ).
  • Fan G , BeardC , ChenRZet al. DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals . J. Neurosci.21 ( 3 ), 788 – 797 ( 2001 ).
  • Lucas A . Programming by early nutrition: an experimental approach . J. Nutr.128 ( Suppl. 2 ), S401 – S406 ( 1998 ).
  • Sinclair KD , AllegrucciC , SinghRet al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status . Proc. Natl Acad. Sci. USA104 ( 49 ), 19351 – 19356 ( 2007 ).
  • Zeisel SH . Epigenetic mechanisms for nutrition determinants of later health outcomes . Am. J. Clin. Nutr.89 ( 5 ), 1488 – 1493 ( 2009 ).
  • Guéant JL , NamourF , Guéant-RodriguezRMet al. Folate and fetal programming: a play in epigenomics? Trends Endocrinol. Metab. 24 ( 6 ), 279 – 289 ( 2013 ).
  • Kelsey G . Epigenetics and the brain: transcriptome sequencing reveals new depths to genomic imprinting . Bioessays33 ( 5 ), 362 – 367 ( 2011 ).
  • Meaney MJ , Ferguson-SmithAC . Epigenetic regulation of the neural transcriptome: the meaning of the marks . Nat. Neurosci.13 ( 11 ), 1313 – 1318 ( 2010 ).
  • Feng J , FouseS , FanG . Epigenetic regulation of neural gene expression and neuronal function . Pediatr. Res.61 ( Part 2 Suppl. 5 ), 58 – 63 ( 2007 ).
  • Lefebvre JL , ZhangY , MeisterMet al. gamma-Protocadherins regulate neuronal survival but are dispensable for circuit formation in retina . Development135 ( 24 ), 4141 – 4151 ( 2008 ).
  • Esumi S , KakazuN , TaguchiYet al. Monoallelic yet combinatorial expression of variable exons of the protocadherin-alpha gene cluster in single neurons . Nat. Genet.37 ( 2 ), 171 – 176 ( 2005 ).
  • Glusman G , YanaiI , RubinIet al. The complete human olfactory subgenome . Genome Res.11 ( 5 ), 685 – 702 ( 2001 ).
  • Colquitt B , Markenscoff-PapadimitriouE , DuffiéRet al. Dnmt3a regulates global gene expression in olfactory sensory neurons and enables odorant-induced transcription . Neuron83 ( 4 ), 823 – 838 ( 2014 ).
  • Nugent BM , WrightCL , ShettyACet al. Brain feminization requires active repression of masculinization via DNA methylation . Nat. Neurosci.18 ( 5 ), 690 – 697 ( 2015 ).
  • Guo JU , SuY , ShinJHet al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain . Nat. Neurosci.17 ( 2 ), 215 – 222 ( 2014 ).
  • Schneider E , El HajjN , RichterSet al. Widespread differences in cortex DNA methylation of the “language gene” CNTNAP2 between humans and chimpanzees . Epigenetics9 ( 4 ), 533 – 545 ( 2014 ).
  • Rochtus A , IzziB , VangeelEet al. DNA methylation analysis of Homeobox genes implicates HOXB7 hypomethylation as risk factor for neural tube defects . Epigenetics10 ( 1 ), 37 – 41 ( 2015 ).
  • Stolk L , Bouwland-BothMI , Van MillNHet al. Epigenetic profiles in children with a neural tube defect; a case–control study in two populations . PLoS ONE8 ( 11 ), 1 – 8 ( 2013 ).
  • Jiang YH , SahooT , MichaelisRCet al. A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A . Am. J. Med. Genet.131 , 1 – 10 ( 2004 ).
  • Sahoo T , del GaudioD , GermanJRet al. Prader–Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster . Nat. Genet.40 ( 6 ), 719 – 721 ( 2008 ).
  • Amir RE , Van den VeyverIB , WanMet al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 . Nat. Genet.23 ( 2 ), 185 – 188 ( 1999 ).
  • Nguyen A , RauchTA , PfeiferGPet al. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain . FASEB J.24 , 3036 – 3051 ( 2010 ).
  • Zhu L , WangX , LiX-Let al. Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders . Hum. Mol. Genet.23 ( 6 ), 1563 – 1578 ( 2014 ).
  • Zhubi A , ChenY , DongE , CookEH , Guidottia , GraysonDR . Increased binding of MeCP2 to the GAD1 and RELN promoters may be mediated by an enrichment of 5-hmC in autism spectrum disorder (ASD) cerebellum . Transl. Psychiatry4 ( 1 ), e349 ( 2014 ).
  • Nagarajan RP , HogartAR , GwyeY , MartinMR , LaSalleJM . Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation . Epigenetics1 ( 4 ), 37 – 41 ( 2006 ).
  • James SJ , ShpylevaS , MelnykSet al. Complex epigenetic regulation of engrailed-2 (EN-2) homeobox gene in the autism cerebellum . Transl. Psychiatry3 , e232 ( 2013 ).
  • Gregory SG , ConnellyJJ , TowersAJet al. Genomic and epigenetic evidence for oxytocin receptor deficiency in autism . BMC Med.7 , 62 ( 2009 ).
  • McConkie-Rosell , LachiewiczM , SpiridigliozziGet al. Evidence that methylation of the FMR-I locus is responsible for variable phenotypic expression of the fragile X syndrome . Am. J. Hum. Genet.53 ( 4 ), 800 – 809 ( 1993 ).
  • Gu Y , ShenY , GibbsRA , NelsonDL . Identification of FMR2, a novel gene associated with the FRAXE CCG repeat and CpG island . Nat. Genet.13 ( 1 ), 109 – 113 ( 1996 ).
  • Novakovic B , SafferyR . The ever growing complexity of placental epigenetics – role in adverse pregnancy outcomes and fetal programming . Placenta33 ( 12 ), 959 – 970 ( 2012 ).
  • Genomics England . www.genomicsengland.co.uk
  • Avon Longitudinal Study of Parents and Children . www.bristol.ac.uk/alspac
  • Bibikova M , BarnesB , TsanCet al. High density DNA methylation array with single CpG site resolution . Genomics98 ( 4 ), 288 – 295 ( 2011 ).
  • Horvath S . DNA methylation age of human tissues and cell types . Genome Biol.14 ( 10 ), R115 ( 2013 ).
  • Houseman EA , MolitorJ , MarsitCJ . Reference-free cell mixture adjustments in analysis of DNA methylation data . Bioinformatics30 ( 10 ), 1431 – 1439 ( 2014 ).
  • Nazor KL , BolandMJ , BibikovaMet al. Application of a low cost array-based technique – TAB-Array – for quantifying and mapping both 5 mC and 5 hmC at single base resolution in human pluripotent stem cells . Genomics104 ( 5 ), 358 – 367 ( 2014 ).
  • McNulty B , McNultyH , MarshallBet al. Impact of continuing folic acid after the first trimester of pregnancy: findings of a randomized trial of Folic Acid Supplementation in the Second and Third Trimesters . Am. J. Clin. Nutr.98 ( 1 ), 92 – 98 ( 2013 ).