7,152
Views
0
CrossRef citations to date
0
Altmetric
Review

Establishment and Functions of DNA Methylation in the Germline

, &
Pages 1399-1413 | Received 11 May 2016, Accepted 20 Jul 2016, Published online: 23 Sep 2016

References

  • Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond . Nat. Rev. Genet.13 ( 7 ), 484 – 492 ( 2012 ).
  • Chen T , LiE . Structure and function of eukaryotic DNA methyltransferases . Curr. Top. Dev. Biol.60 , 55 – 89 ( 2004 ).
  • Hitt MM , WuTL , CohenG , LinnS . De novo and maintenance DNA methylation by a mouse plasmacytoma cell DNA methyltransferase . J. Biol. Chem.263 ( 9 ), 4392 – 4399 ( 1988 ).
  • Pradhan S , BacollaA , WellsRD , RobertsRJ . Recombinant human DNA (cytosine-5) methyltransferase: I. Expression, purification, and comparison of de novo and maintenance methylation . J. Biol. Chem.274 ( 46 ), 33002 – 33010 ( 1999 ).
  • Arita K , AriyoshiM , TochioH , NakamuraY , ShirakawaM . Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism . Nature455 ( 7214 ), 818 – 821 ( 2008 ).
  • Avvakumov GV , WalkerJR , XueSet al. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1 . Nature455 ( 7214 ), 822 – 825 ( 2008 ).
  • Okano M , XieS , LiE . Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases . Nat. Genet.19 ( 3 ), 219 – 220 ( 1998 ).
  • Bourc’his D , XuG-L , LinC-S , BollmanB , BestorTH . Dnmt3L and the establishment of maternal genomic imprints . Science294 ( 5551 ), 2536 – 2539 ( 2001 ).
  • Chédin F , LieberMR , HsiehC-L . The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a . Proc. Natl Acad. Sci. USA99 ( 26 ), 16916 – 16921 ( 2002 ).
  • Gowher H , LiebertK , HermannA , XuG , JeltschA . Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L . J. Biol. Chem.280 ( 14 ), 13341 – 13348 ( 2005 ).
  • Jia D , JurkowskaRZ , ZhangX , JeltschA , ChengX . Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation . Nature449 ( 7159 ), 248 – 251 ( 2007 ).
  • Wienholz BL , KaretaMS , MoarefiAH , GordonCA , GinnoPA , ChédinF . DNMT3L modulates significant and distinct flanking sequence preference for DNA methylation by DNMT3A and DNMT3B in vivo . PLoS Genet.6 ( 9 ), e1001106 ( 2010 ).
  • Hanna CW , KelseyG . The specification of imprints in mammals . Heredity113 ( 2 ), 176 – 183 ( 2014 ).
  • Feil R , BergerF . Convergent evolution of genomic imprinting in plants and mammals . Trends Genet.23 ( 4 ), 192 – 199 ( 2007 ).
  • Ferguson-Smith AC . Genomic imprinting: the emergence of an epigenetic paradigm . Nat. Rev. Genet.12 ( 8 ), 565 – 575 ( 2011 ).
  • Wang L , ZhangJ , DuanJet al. Programming and inheritance of parental DNA methylomes in mammals . Cell157 ( 4 ), 979 – 991 ( 2014 ).
  • Tomizawa S , KobayashiH , WatanabeTet al. Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes . Development138 ( 5 ), 811 – 820 ( 2011 ).
  • Kobayashi H , SudaC , AbeT , KoharaY , IkemuraT , SasakiH . Bisulfite sequencing and dinucleotide content analysis of 15 imprinted mouse differentially methylated regions (DMRs): paternally methylated DMRs contain less CpGs than maternally methylated DMRs . Cytogenet. Genome Res.113 ( 1–4 ), 130 – 137 ( 2006 ).
  • Deaton AM , BirdA . CpG islands and the regulation of transcription . Genes Dev.25 ( 10 ), 1010 – 1022 ( 2011 ).
  • Illingworth RS , Gruenewald-SchneiderU , WebbSet al. Orphan CpG islands identify numerous conserved promoters in the mammalian genome . PLoS Genet.6 ( 9 ), e1001134 ( 2010 ).
  • Auclair G , GuibertS , BenderA , WeberM . Ontogeny of CpG island methylation and specificity of DNMT3 methyltransferases during embryonic development in the mouse . Genome Biol.15 ( 12 ), 545 ( 2014 ).
  • Illingworth R , KerrA , DesousaDet al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci . PLoS Biol.6 ( 1 ), e22 ( 2008 ).
  • Maunakea AK , NagarajanRP , BilenkyMet al. Conserved role of intragenic DNA methylation in regulating alternative promoters . Nature466 ( 7303 ), 253 – 257 ( 2010 ).
  • Lienert F , WirbelauerC , SomI , DeanA , MohnF , SchubelerD . Identification of genetic elements that autonomously determine DNA methylation states . Nat. Genet.43 ( 11 ), 1091 – 1097 ( 2011 ).
  • Wachter E , QuanteT , MerusiCet al. Synthetic CpG islands reveal DNA sequence determinants of chromatin structure . eLife3 , e03397 ( 2014 ).
  • Krebs AR , Dessus-BabusS , BurgerL , SchübelerD . High-throughput engineering of a mammalian genome reveals building principles of methylation states at CG rich regions . eLife3 , e04094 ( 2014 ).
  • Marchal C , MiottoB . Emerging concept in DNA methylation: role of transcription factors in shaping DNA methylation patterns . J. Cell. Physiol.230 ( 4 ), 743 – 751 ( 2015 ).
  • Smallwood SA , TomizawaS-I , KruegerFet al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos . Nat. Genet.43 ( 8 ), 811 – 814 ( 2011 ).
  • Kobayashi H , SakuraiT , ImaiMet al. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks . PLoS Genet.8 ( 1 ), e1002440 ( 2012 ).
  • Guibert S , FornéT , WeberM . Global profiling of DNA methylation erasure in mouse primordial germ cells . Genome Res.22 ( 4 ), 633 – 641 ( 2012 ).
  • Seisenberger S , AndrewsS , KruegerFet al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells . Mol. Cell48 ( 6 ), 849 – 862 ( 2012 ).
  • Li J-Y , Lees-MurdockDJ , XuG-L , WalshCP . Timing of establishment of paternal methylation imprints in the mouse . Genomics84 ( 6 ), 952 – 960 ( 2004 ).
  • Kato Y , KanedaM , HataKet al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse . Hum. Mol. Genet.16 ( 19 ), 2272 – 2280 ( 2007 ).
  • Hiura H , ObataY , KomiyamaJ , ShiraiM , KonoT . Oocyte growth-dependent progression of maternal imprinting in mice . Genes Cells11 ( 4 ), 353 – 361 ( 2006 ).
  • Lucifero D , MannMRW , BartolomeiMS , TraslerJM . Gene-specific timing and epigenetic memory in oocyte imprinting . Hum. Mol. Genet.13 ( 8 ), 839 – 849 ( 2004 ).
  • Obata Y , KonoT . Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth . J. Biol. Chem.277 ( 7 ), 5285 – 5289 ( 2002 ).
  • Watanabe T , TomizawaS-I , MitsuyaKet al. Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus . Science332 ( 6031 ), 848 – 852 ( 2011 ).
  • Aravin AA , SachidanandamR , Bourc’hisDet al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice . Mol. Cell31 ( 6 ), 785 – 799 ( 2008 ).
  • Kuramochi-Miyagawa S , WatanabeT , GotohKet al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes . Genes Dev.22 ( 7 ), 908 – 917 ( 2008 ).
  • Chotalia M , SmallwoodSA , RufNet al. Transcription is required for establishment of germline methylation marks at imprinted genes . Genes Dev.23 ( 1 ), 105 – 117 ( 2009 ).
  • Fröhlich LF , MrakovcicM , SteinbornR , ChungU-I , BastepeM , JüppnerH . Targeted deletion of the Nesp55 DMR defines another Gnas imprinting control region and provides a mouse model of autosomal dominant PHP-Ib . Proc. Natl Acad. Sci. USA107 ( 20 ), 9275 – 9280 ( 2010 ).
  • Smith EY , FuttnerCR , ChamberlainSJ , JohnstoneKA , ResnickJL . Transcription is required to establish maternal imprinting at the Prader–Willi syndrome and Angelman syndrome locus . PLoS Genet.7 ( 12 ), e1002422 ( 2011 ).
  • Veselovska L , SmallwoodSA , SaadehHet al. Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape . Genome Biol.16 ( 1 ), 1 – 17 ( 2015 ).
  • Smith ZD , MeissnerA . DNA methylation: roles in mammalian development . Nat. Rev. Genet.14 ( 3 ), 204 – 220 ( 2013 ).
  • Okano M , BellDW , HaberDA , LiE . DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development . Cell99 ( 3 ), 247 – 257 ( 1999 ).
  • Bourc’his D , BestorTH . Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L . Nature431 ( 7004 ), 96 – 99 ( 2004 ).
  • Shirane K , TohH , KobayashiH , MiuraF , ChibaH , ItoT . Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases . PLoS Genet.9 ( 4 ), e1003439 ( 2013 ).
  • Erkek S , HisanoM , LiangC-Yet al. Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa . Nat. Struct. Mol. Biol.20 ( 7 ), 868 – 875 ( 2013 ).
  • Singh P , LiAX , TranDAet al. De novo DNA methylation in the male germ line occurs by default but is excluded at sites of H3K4 methylation . Cell Rep.4 ( 1 ), 205 – 219 ( 2013 ).
  • Zentner GE , HenikoffS . Regulation of nucleosome dynamics by histone modifications . Nat. Struct. Mol. Biol.20 ( 3 ), 259 – 266 ( 2013 ).
  • Noh K-M , WangH , KimHRet al. Engineering of a histone-recognition domain in Dnmt3a alters the epigenetic landscape and phenotypic features of mouse ESCs . Mol. Cell59 ( 1 ), 89 – 103 ( 2015 ).
  • Vlachogiannis G , NiederhuthCE , TunaSet al. The Dnmt3L ADD domain controls cytosine methylation establishment during spermatogenesis . Cell Rep.10 ( 6 ), 944 – 956 ( 2015 ).
  • Ooi SKT , QiuC , BernsteinEet al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA . Nature448 ( 7154 ), 714 – 717 ( 2007 ).
  • Mikkelsen TS , KuM , JaffeDBet al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells . Nature448 ( 7153 ), 553 – 560 ( 2007 ).
  • Kizer KO , PhatnaniHP , ShibataY , HallH , GreenleafAL , StrahlBD . A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation . Mol. Cell. Biol.25 ( 8 ), 3305 – 3316 ( 2005 ).
  • Edmunds JW , MahadevanLC , ClaytonAL . Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation . EMBO J.27 ( 2 ), 406 – 420 ( 2008 ).
  • Hawkins RD , HonGC , LeeLKet al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells . Cell Stem Cell6 ( 5 ), 479 – 491 ( 2010 ).
  • Du J , JohnsonLM , JacobsenSE , PatelDJ . DNA methylation pathways and their crosstalk with histone methylation . Nat. Rev. Mol. Cell Biol.16 ( 9 ), 519 – 532 ( 2015 ).
  • Rose NR , KloseRJ . Understanding the relationship between DNA methylation and histone lysine methylation . Biochim. Biophys. Acta1839 ( 12 ), 1362 – 1372 ( 2014 ).
  • Smallwood SA , KelseyG . De novo DNA methylation: a germ cell perspective . Trends Genet.28 ( 1 ), 33 – 42 ( 2012 ).
  • Tsumura A , HayakawaT , KumakiYet al. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b . Genes Cells11 ( 7 ), 805 – 814 ( 2006 ).
  • Baubec T , ColomboDF , WirbelauerCet al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation . Nature520 ( 7546 ), 243 – 247 ( 2015 ).
  • Morselli M , PastorWA , MontaniniBet al. In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse . eLife4 , e06205 ( 2015 ).
  • Dhayalan A , RajaveluA , RathertPet al. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation . J. Biol. Chem.285 ( 34 ), 26114 – 26120 ( 2010 ).
  • Balhorn R . The protamine family of sperm nuclear proteins . Genome Biol.8 ( 9 ), 1 – 8 ( 2007 ).
  • Brykczynska U , HisanoM , ErkekSet al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa . Nat. Struct. Mol. Biol.17 ( 6 ), 679 – 687 ( 2010 ).
  • Lesch BJ , DokshinGA , YoungRA , MccarreyJR , PageDC . A set of genes critical to development is epigenetically poised in mouse germ cells from fetal stages through completion of meiosis . Proc. Natl Acad. Sci. USA110 ( 40 ), 16061 – 16066 ( 2013 ).
  • Blackledge NP , KloseRJ . CpG island chromatin: a platform for gene regulation . Epigenetics6 ( 2 ), 147 – 152 ( 2011 ).
  • Ciccone DN , SuH , HeviSet al. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints . Nature461 ( 7262 ), 415 – 418 ( 2009 ).
  • Stewart KR , VeselovskaL , KimJet al. Dynamic changes in histone modifications precede de novo DNA methylation in oocytes . Genes Dev.29 ( 23 ), 2449 – 2462 ( 2015 ).
  • Nashun B , Hill PeterWS , SmallwoodSAet al. Continuous histone replacement by Hira is essential for normal transcriptional regulation and de novo DNA methylation during mouse oogenesis . Mol. Cell60 ( 4 ), 611 – 625 ( 2015 ).
  • Goldberg AD , BanaszynskiLA , NohK-Met al. Distinct factors control histone variant H3.3 localization at specific genomic regions . Cell140 ( 5 ), 678 – 691 ( 2010 ).
  • Li B-Z , HuangZ , CuiQ-Yet al. Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase . Cell Res.21 ( 8 ), 1172 – 1181 ( 2011 ).
  • Guo X , WangL , LiJet al. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A . Nature517 ( 7536 ), 640 – 644 ( 2015 ).
  • Qiu C , SawadaK , ZhangX , ChengX . The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds . Nat. Struct. Biol.9 ( 3 ), 217 – 224 ( 2002 ).
  • Okae H , ChibaH , HiuraHet al. Genome-wide analysis of DNA methylation dynamics during early human development . PLoS Genet.10 ( 12 ), e1004868 ( 2014 ).
  • Huntriss J , HinkinsM , OliverBet al. Expression of mRNAs for DNA methyltransferases and methyl-CpG-binding proteins in the human female germ line, preimplantation embryos, and embryonic stem cells . Mol. Reprod. Dev.67 ( 3 ), 323 – 336 ( 2004 ).
  • Kaneda M , OkanoM , HataKet al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting . Nature429 ( 6994 ), 900 – 903 ( 2004 ).
  • Hata K , KusumiM , YokomineT , LiE , SasakiH . Meiotic and epigenetic aberrations in Dnmt3L-deficient male germ cells . Mol. Reprod. Dev.73 ( 1 ), 116 – 122 ( 2006 ).
  • Webster KE , O’BryanMK , FletcherSet al. Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis . Proc. Natl Acad. Sci. USA102 ( 11 ), 4068 – 4073 ( 2005 ).
  • Zamudio N , BarauJ , TeissandierAet al. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination . Genes Dev.29 ( 12 ), 1256 – 1270 ( 2015 ).
  • Keller TE , HanP , YiSV . Evolutionary transition of promoter and gene body DNA methylation across invertebrate–vertebrate boundary . Mol. Biol. Evol.33 ( 4 ), 1019 – 1028 ( 2016 ).
  • Hata K , OkanoM , LeiH , LiE . Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice . Development129 ( 8 ), 1983 – 1993 ( 2002 ).
  • Smith ZD , ChanMM , MikkelsenTSet al. A unique regulatory phase of DNA methylation in the early mammalian embryo . Nature484 ( 7394 ), 339 – 344 ( 2012 ).
  • Borgel J , GuibertS , LiYet al. Targets and dynamics of promoter DNA methylation during early mouse development . Nat. Genet.42 ( 12 ), 1093 – 1100 ( 2010 ).
  • Proudhon C , DuffiéR , AjjanSet al. Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes . Mol. Cell47 ( 6 ), 909 – 920 ( 2012 ).
  • Rutledge CE , ThakurA , O’NeillKMet al. Ontogeny, conservation and functional significance of maternally inherited DNA methylation at two classes of non-imprinted genes . Development141 ( 6 ), 1313 – 1323 ( 2014 ).
  • Duffié R , AjjanS , GreenbergMVet al. The Gpr1/Zdbf2 locus provides new paradigms for transient and dynamic genomic imprinting in mammals . Genes Dev.28 ( 5 ), 463 – 478 ( 2014 ).
  • Branco MR , KingM , Perez-GarciaVet al. Maternal DNA methylation regulates early trophoblast development . Dev. Cell36 ( 2 ), 152 – 163 ( 2016 ).
  • De La Fuente R , BaumannC , FanT , SchmidtmannA , DobrinskiI , MueggeK . Lsh is required for meiotic chromosome synapsis and retrotransposon silencing in female germ cells . Nat. Cell Biol.8 ( 12 ), 1448 – 1454 ( 2006 ).
  • Chen J , TorciaS , XieFet al. Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes . Nat. Cell Biol.15 ( 12 ), 1415 – 1423 ( 2013 ).
  • Guo F , LiX , LiangDet al. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote . Cell Stem Cell15 ( 4 ), 447 – 458 ( 2014 ).
  • Santos F , HendrichB , ReikW , DeanW . Dynamic reprogramming of DNA methylation in the early mouse embryo . Dev. Biol.241 ( 1 ), 172 – 182 ( 2002 ).
  • Loppin B , BonnefoyE , AnselmeC , LaurenconA , KarrTL , CoubleP . The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus . Nature437 ( 7063 ), 1386 – 1390 ( 2005 ).
  • Torres-Padilla ME , BannisterAJ , HurdPJ , KouzaridesT , Zernicka-GoetzM . Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos . Int. J. Dev. Biol.50 , 455 – 461 ( 2006 ).
  • Amouroux R , NashunB , ShiraneKet al. De novo DNA methylation drives 5hmC accumulation in mouse zygotes . Nat. Cell Biol.18 ( 2 ), 225 – 233 ( 2016 ).
  • Messerschmidt DM , KnowlesBB , SolterD . DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos . Genes Dev.28 ( 8 ), 812 – 828 ( 2014 ).
  • Grossniklaus U , KellyWG , Ferguson-SmithAC , PembreyM , LindquistS . Transgenerational epigenetic inheritance: how important is it?Nat. Rev. Genet.14 ( 3 ), 228 – 235 ( 2013 ).
  • Radford EJ , ItoM , ShiHet al. In utero undernourishment perturbs the adult sperm methylome and is linked to metabolic disease transmission . Science345 ( 6198 ), 1255903 – 1255903 ( 2014 ).
  • Dias BG , ResslerKJ . Parental olfactory experience influences behavior and neural structure in subsequent generations . Nat. Neurosci.17 ( 1 ), 89 – 96 ( 2014 ).
  • Carone BR , FauquierL , HabibNet al. Paternally-induced transgenerational environmental reprogramming of metabolic gene expression in mammals . Cell143 ( 7 ), 1084 – 1096 ( 2010 ).
  • Shea JM , SerraRW , CaroneBRet al. Genetic and epigenetic variation, but not diet, shape the sperm methylome . Dev. Cell35 ( 6 ), 750 – 758 ( 2015 ).
  • Daxinger L , WhitelawE . Understanding transgenerational epigenetic inheritance via the gametes in mammals . Nat. Rev. Genet.13 ( 3 ), 153 – 162 ( 2012 ).
  • Sharma U , ConineCC , SheaJMet al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals . Science351 ( 6271 ), 391 – 396 ( 2016 ).
  • Lane N , DeanW , ErhardtSet al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse . Genesis35 ( 2 ), 88 – 93 ( 2003 ).
  • Nakamura T , AraiY , UmeharaHet al. PGC7/Stella protects against DNA demethylation in early embryogenesis . Nat. Cell Biol.9 ( 1 ), 64 – 71 ( 2007 ).
  • Nakamura T , LiuY-J , NakashimaHet al. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos . Nature486 ( 7403 ), 415 – 419 ( 2012 ).
  • Terranova R , YokobayashiS , StadlerMBet al. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos . Dev. Cell15 ( 5 ), 668 – 679 ( 2008 ).
  • Mager J , MontgomeryND , de VillenaFP , MagnusonT . Genome imprinting regulated by the mouse Polycomb group protein Eed . Nat. Genet.33 ( 4 ), 502 – 507 ( 2003 ).
  • Schroeder DI , JayashankarK , DouglasKCet al. Early developmental and evolutionary origins of gene body DNA methylation patterns in mammalian placentas . PLoS Genet.11 ( 8 ), e1005442 ( 2015 ).
  • Umlauf D , GotoY , CaoRet al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes . Nat. Genet.36 ( 12 ), 1296 – 1300 ( 2004 ).
  • Lewis A , GreenK , DawsonCet al. Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo . Development133 ( 21 ), 4203 – 4210 ( 2006 ).
  • Wagschal A , SutherlandHG , WoodfineKet al. G9a histone methyltransferase contributes to imprinting in the mouse placenta . Mol. Cell. Biol.28 ( 3 ), 1104 – 1113 ( 2008 ).
  • Santos F , PetersAH , OtteAP , ReikW , DeanW . Dynamic chromatin modifications characterise the first cell cycle in mouse embryos . Dev. Biol.280 ( 1 ), 225 – 236 ( 2005 ).
  • Van Der Heijden GW , DiekerJW , DerijckAA . Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote . Mech. Dev.122 , 1008 – 1022 ( 2005 ).
  • Puschendorf M , TerranovaR , BoutsmaEet al. PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos . Nat. Genet.40 ( 4 ), 411 – 420 ( 2008 ).
  • Smith ZD , ChanMM , HummKCet al. DNA methylation dynamics of the human preimplantation embryo . Nature511 ( 7511 ), 611 – 615 ( 2014 ).
  • Guo H , ZhuP , YanLet al. The DNA methylation landscape of human early embryos . Nature511 ( 7511 ), 606 – 610 ( 2014 ).