387
Views
0
CrossRef citations to date
0
Altmetric
Review

Nutriepigenomics and Malnutrition

, , , , &
Pages 893-917 | Received 04 Dec 2016, Accepted 06 Feb 2017, Published online: 02 Jun 2017

References

  • Burdge GC , HoileSP , LillycropKA . Epigenetics: are there implications for personalised nutrition?Curr. Opin. Clin. Nutr. Metab. Care15 ( 5 ), 442 – 447 ( 2012 ).
  • Ravelli AC , Van Der MeulenJH , MichelsRPet al. Glucose tolerance in adults after prenatal exposure to famine . Lancet351 ( 9097 ), 173 – 177 ( 1998 ).
  • Ravelli AC , Van Der MeulenJH , OsmondC , BarkerDJ , BlekerOP . Obesity at the age of 50 y in men and women exposed to famine prenatally . Am. J. Clin. Nutr.70 ( 5 ), 811 – 816 ( 1999 ).
  • Roseboom TJ , Van Der MeulenJH , OsmondC , BarkerDJ , RavelliAC , BlekerOP . Plasma lipid profiles in adults after prenatal exposure to the Dutch famine . Am. J. Clin. Nutr.72 ( 5 ), 1101 – 1106 ( 2000 ).
  • Heijmans BT , TobiEW , SteinADet al. Persistent epigenetic differences associated with prenatal exposure to famine in humans . Proc. Natl Acad. Sci. USA105 ( 44 ), 17046 – 17049 ( 2008 ).
  • Jiménez-Chillarón JC , DíazR , MartínezDet al. The role of nutrition on epigenetic modifications and their implications on health . Biochimie94 ( 11 ), 2242 – 2263 ( 2012 ).
  • Lillycrop KA , BurdgeGC . Epigenetic mechanisms linking early nutrition to long term health . Best Pract. Res. Clin. Endocrinol. Metab.26 ( 5 ), 667 – 676 ( 2012 ).
  • Cheung L , GustavssonC , NorstedtG , Tollet-EgnellP . Sex-different and growth hormone-regulated expression of microRNA in rat liver . BMC Mol. Biol.10 , 13 ( 2009 ).
  • De Roos B . Personalised nutrition: ready for practice?Proc. Nutr. Soc.72 ( 1 ), 48 – 52 ( 2013 ).
  • Faulk C , DolinoyDC . Timing is everything: the when and how of environmentally induced changes in the epigenome of animals . Epigenetics6 ( 7 ), 791 – 797 ( 2011 ).
  • Fenech M , El-SohemyA , CahillLet al. Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice . J. Nutrigenet. Nutrigenomics4 ( 2 ), 69 – 89 ( 2011 ).
  • Maunakea AK , NagarajanRP , BilenkyMet al. Conserved role of intragenic DNA methylation in regulating alternative promoters . Nature466 ( 7303 ), 253 – 257 ( 2010 ).
  • Reik W , DeanW , WalterJ . Epigenetic reprogramming in mammalian development . Science293 ( 5532 ), 1089 – 1093 ( 2001 ).
  • Baubec T , ColomboDF , WirbelauerCet al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation . Nature520 ( 7546 ), 243 – 247 ( 2015 ).
  • Li E , BeardC , JaenischR . Role for DNA methylation in genomic imprinting . Nature366 ( 6453 ), 362 – 365 ( 1993 ).
  • Wong CCY , CaspiA , WilliamsB , HoutsR , CraigIW , MillJ . A longitudinal twin study of skewed X chromosome-inactivation . PLoS ONE6 ( 3 ), e17873 ( 2011 ).
  • Ferguson-Smith AC . Genomic imprinting: the emergence of an epigenetic paradigm . Nat. Rev. Genet.12 ( 8 ), 565 – 575 ( 2011 ).
  • Kriaucionis S , HeintzN . The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain . Science324 ( 5929 ), 929 – 930 ( 2009 ).
  • Ramiro AR , BarretoVM . Activation-induced cytidine deaminase and active cytidine demethylation . Trends Biochem. Sci.40 ( 3 ), 172 – 181 ( 2015 ).
  • Bochtler M , KolanoA , XuGL . DNA demethylation pathways: additional players and regulators . Bioessays39 ( 1 ), 1 – 13 ( 2017 ).
  • Turner BM . Histone acetylation and an epigenetic code . Bioessays22 ( 9 ), 836 – 845 ( 2000 ).
  • Raychaudhuri N , RaychaudhuriS , ThamotharanM , DevaskarSU . Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring . J. Biol. Chem.283 ( 20 ), 13611 – 13626 ( 2008 ).
  • Zhao J , SunBK , ErwinJA , SongJJ , LeeJT . Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome . Science322 ( 5902 ), 750 – 756 ( 2008 ).
  • Valadi H , EkströmK , BossiosA , SjöstrandM , LeeJJ , LötvallJO . Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells . Nat. Cell Biol.9 ( 6 ), 654 – 659 ( 2007 ).
  • Vickers KC , PalmisanoBT , ShoucriBM , ShamburekRD , RemaleyAT . MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins . Nat. Cell Biol.13 ( 4 ), 423 – 433 ( 2011 ).
  • Lu H , BuchanRJ , CookSA . MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism . Cardiovasc. Res.86 ( 3 ), 410 – 420 ( 2010 ).
  • Vickers KC , LandstreetSR , LevinMGet al. MicroRNA-223 coordinates cholesterol homeostasis . Proc. Natl Acad. Sci. USA111 ( 40 ), 14518 – 14523 ( 2014 ).
  • Cedar H , BergmanY . Linking DNA methylation and histone modification: patterns and paradigms . Nat. Rev. Genet.10 ( 5 ), 295 – 304 ( 2009 ).
  • Viré E , BrennerC , DeplusRet al. The Polycomb group protein EZH2 directly controls DNA methylation . Nature439 ( 7078 ), 871 – 874 ( 2006 ).
  • Zardo G , CiolfiA , VianLet al. Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression . Blood119 ( 17 ), 4034 – 4046 ( 2012 ).
  • Sandovici I , SmithNH , NitertMDet al. Maternal diet and aging alter the epigenetic control of a promoter–enhancer interaction at the Hnf4a gene in rat pancreatic islets . Proc. Natl Acad. Sci. USA108 ( 13 ), 5449 – 5454 ( 2011 ).
  • Stadler MB , MurrR , BurgerLet al. DNA-binding factors shape the mouse methylome at distal regulatory regions . Nature480 ( 7378 ), 490 – 495 ( 2011 ).
  • Anderson OS , SantKE , DolinoyDC . Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation . J. Nutr. Biochem.23 ( 8 ), 853 – 859 ( 2012 ).
  • Wu SC , ZhangY . Active DNA demethylation: many roads lead to Rome . Nat. Rev. Mol. Cell Biol.11 ( 9 ), 607 – 620 ( 2010 ).
  • Feng S , JacobsenSE , ReikW . Epigenetic reprogramming in plant and animal development . Science330 ( 6004 ), 622 – 627 ( 2010 ).
  • Balhorn R . The protamine family of sperm nuclear proteins . Genome Biol.8 ( 9 ), 227 ( 2007 ).
  • Kota SK , FeilR . Epigenetic transitions in germ cell development and meiosis . Dev. Cell19 ( 5 ), 675 – 686 ( 2010 ).
  • Hanel ML , WevrickR . Establishment and maintenance of DNA methylation patterns in mouse Ndn: implications for maintenance of imprinting in target genes of the imprinting center . Mol. Cell. Biol.21 ( 7 ), 2384 – 2392 ( 2001 ).
  • Bollati V , BaccarelliA . Environmental epigenetics . Heredity105 ( 1 ), 105 – 112 ( 2010 ).
  • Yoder JA , SomanNS , VerdineGL , BestorTH . DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe . J. Mol. Biol.270 ( 3 ), 385 – 395 ( 1997 ).
  • Santos F , HendrichB , ReikW , DeanW . Dynamic reprogramming of DNA methylation in the early mouse embryo . Dev. Biol.241 ( 1 ), 172 – 182 ( 2002 ).
  • Fraga MF , BallestarE , PazMFet al. Epigenetic differences arise during the lifetime of monozygotic twins . Proc. Natl Acad. Sci. USA102 ( 30 ), 10604 – 10609 ( 2005 ).
  • Wong CCY , CaspiA , WilliamsBet al. A longitudinal study of epigenetic variation in twins . Epigenetics5 ( 6 ), 516 – 526 ( 2010 ).
  • Loke YJ , NovakovicB , OllikainenMet al. The Peri/postnatal epigenetic twins study (PETS) . Twin Res. Hum. Genet.16 ( 1 ), 13 – 20 ( 2013 ).
  • Gordon L , JooJE , PowellJEet al. Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence . Genome Res.22 ( 8 ), 1395 – 1406 ( 2012 ).
  • Issa JP . Aging and epigenetic drift: a vicious cycle . J. Clin. Invest.124 ( 1 ), 24 – 29 ( 2014 ).
  • Boyd-Kirkup JD , GreenCD , WuG , WangD , HanJDJ . Epigenomics and the regulation of aging . Epigenomics5 ( 2 ), 205 – 227 ( 2013 ).
  • Murgatroyd C , WuY , BockmühlY , SpenglerD . The Janus face of DNA methylation in aging . Aging2 ( 2 ), 107 – 110 ( 2010 ).
  • Vaquero A , ReinbergD . Calorie restriction and the exercise of chromatin . Genes Dev.23 ( 16 ), 1849 – 1869 ( 2009 ).
  • Godfrey KM , BarkerDJ . Fetal programming and adult health . Public Health Nutr.4 ( 2B ), 611 – 624 ( 2001 ).
  • Lillycrop KA , BurdgeGC . Epigenetic changes in early life and future risk of obesity . Int. J. Obes. (Lond.)35 ( 1 ), 72 – 83 ( 2011 ).
  • Godfrey KM , ReynoldsRM , PrescottSLet al. Influence of maternal obesity on the long-term health of offspring . Lancet Diabetes Endocrinol.5 ( 1 ), 53 – 64 ( 2017 ).
  • Huang C , LiZ , WangM , MartorellR . Early life exposure to the 1959–1961 Chinese famine has long-term health consequences . J. Nutr.140 ( 10 ), 1874 – 1878 ( 2010 ).
  • Zheng X , WangY , RenWet al. Risk of metabolic syndrome in adults exposed to the great Chinese famine during the fetal life and early childhood . Eur. J. Clin. Nutr.66 ( 2 ), 231 – 236 ( 2012 ).
  • Li Y , HeY , QiLet al. Exposure to the Chinese famine in early life and the risk of hyperglycemia and Type 2 diabetes in adulthood . Diabetes59 ( 10 ), 2400 – 2406 ( 2010 ).
  • Hult M , TornhammarP , UedaPet al. Hypertension, diabetes and overweight: looming legacies of the Biafran famine . PLoS ONE5 ( 10 ), e13582 ( 2010 ).
  • Stein AD , ZybertPA , Van Der Pal-De BruinK , LumeyLH . Exposure to famine during gestation, size at birth, and blood pressure at age 59 y: evidence from the Dutch famine . Eur. J. Epidemiol.21 ( 10 ), 759 – 765 ( 2006 ).
  • Painter RC , RoseboomTJ , BlekerOP . Prenatal exposure to the Dutch famine and disease in later life: an overview . Reprod. Toxicol.20 ( 3 ), 345 – 352 ( 2005 ).
  • Lumey LH . Decreased birthweights in infants after maternal in utero exposure to the Dutch famine of 1944–1945 . Paediatr. Perinat. Epidemiol.6 ( 2 ), 240 – 253 ( 1992 ).
  • Kaati G , BygrenLO , EdvinssonS . Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period . Eur. J. Hum. Genet.10 ( 11 ), 682 – 688 ( 2002 ).
  • Bygren LO , TinghögP , CarstensenJet al. Change in paternal grandmothers’ early food supply influenced cardiovascular mortality of the female grandchildren . BMC Genet.15 , 12 ( 2014 ).
  • Kamakura M . Royalactin induces queen differentiation in honeybees . Nature473 ( 7348 ), 478 – 483 ( 2011 ).
  • Kucharski R , MaleszkaJ , ForetS , MaleszkaR . Nutritional control of reproductive status in honeybees via DNA methylation . Science319 ( 5871 ), 1827 – 1830 ( 2008 ).
  • Barker DJ . The developmental origins of chronic adult disease . Acta Paediatr. Suppl.93 ( 446 ), 26 – 33 ( 2004 ).
  • Radford EJ , ItoM , ShiHet al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism . Science345 ( 6198 ), 1255903 ( 2014 ).
  • Gluckman PD , HansonMA , SpencerHG . Predictive adaptive responses and human evolution . Trends Ecol. Evol.20 ( 10 ), 527 – 533 ( 2005 ).
  • Tobi EW , LumeyLH , TalensRPet al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific . Hum. Mol. Genet.18 ( 21 ), 4046 – 4053 ( 2009 ).
  • Tobi EW , HeijmansBT , KremerDet al. DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age . Epigenetics6 ( 2 ), 171 – 176 ( 2011 ).
  • Tosh DN , FuQ , CallawayCWet al. Epigenetics of programmed obesity: alteration in IUGR rat hepatic IGF1 mRNA expression and histone structure in rapid vs. delayed postnatal catch-up growth . Am. J. Physiol. Gastrointest. Liver Physiol.299 ( 5 ), G1023 – G1029 ( 2010 ).
  • Park JH , StoffersDA , NichollsRD , SimmonsRA . Development of Type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1 . J. Clin. Invest.118 ( 6 ), 2316 – 2324 ( 2008 ).
  • Alejandro EU , GreggB , WallenTet al. Maternal diet-induced microRNAs and mTOR underlie β cell dysfunction in offspring . J. Clin. Invest.124 ( 10 ), 4395 – 4410 ( 2014 ).
  • Jousse C , ParryL , Lambert-LanglaisSet al. Perinatal undernutrition affects the methylation and expression of the leptin gene in adults: implication for the understanding of metabolic syndrome . FASEB J.25 ( 9 ), 3271 – 3278 ( 2011 ).
  • Krechowec SO , VickersM , GertlerA , BreierBH . Prenatal influences on leptin sensitivity and susceptibility to diet-induced obesity . J. Endocrinol.189 ( 2 ), 355 – 363 ( 2006 ).
  • Gupta RK , GaoN , GorskiRKet al. Expansion of adult β-cell mass in response to increased metabolic demand is dependent on HNF-4α . Genes Dev.21 ( 7 ), 756 – 769 ( 2007 ).
  • Maclennan NK , JamesSJ , MelnykSet al. Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats . Physiol. Genomics18 ( 1 ), 43 – 50 ( 2004 ).
  • Fu Q , McknightRA , YuX , CallawayCW , LaneRH . Growth retardation alters the epigenetic characteristics of hepatic dual specificity phosphatase 5 . FASEB J.20 ( 12 ), 2127 – 2129 ( 2006 ).
  • Rodgers JT , LerinC , HaasW , GygiSP , SpiegelmanBM , PuigserverP . Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1 . Nature434 ( 7029 ), 113 – 118 ( 2005 ).
  • Amat R , SolanesG , GiraltM , VillarroyaF . SIRT1 is involved in glucocorticoid-mediated control of uncoupling protein-3 gene transcription . J. Biol. Chem.282 ( 47 ), 34066 – 34076 ( 2007 ).
  • Gat-Yablonski G , PandoR , PhillipM . Nutritional catch-up growth . World Rev. Nutr. Diet.106 , 83 – 89 ( 2013 ).
  • Pando R , ShtaifB , PhillipM , Gat-YablonskiG . A serum component mediates food restriction-induced growth attenuation . Endocrinology155 ( 3 ), 932 – 940 ( 2014 ).
  • Pando R , Even-ZoharN , ShtaifBet al. MicroRNAs in the growth plate are responsive to nutritional cues: association between miR-140 and SIRT1 . J. Nutr. Biochem.23 ( 11 ), 1474 – 1481 ( 2012 ).
  • Gluckman PD , LillycropKA , VickersMHet al. Metabolic plasticity during mammalian development is directionally dependent on early nutritional status . Proc. Natl Acad. Sci. USA104 ( 31 ), 12796 – 12800 ( 2007 ).
  • Lillycrop KA , Slater-JefferiesJL , HansonMA , GodfreyKM , JacksonAA , BurdgeGC . Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications . Br. J. Nutr.97 ( 6 ), 1064 – 1073 ( 2007 ).
  • Burns SP , DesaiM , CohenRDet al. Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation . J. Clin. Invest.100 ( 7 ), 1768 – 1774 ( 1997 ).
  • Burdge GC , Slater-JefferiesJ , TorrensC , PhillipsES , HansonMA , LillycropKA . Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations . Br. J. Nutr.97 ( 3 ), 435 – 439 ( 2007 ).
  • Whorwood CB , FirthKM , BudgeH , SymondsME . Maternal undernutrition during early to midgestation programs tissue-specific alterations in the expression of the glucocorticoid receptor, 11beta-hydroxysteroid dehydrogenase isoforms, and type 1 angiotensin ii receptor in neonatal sheep . Endocrinology142 ( 7 ), 2854 – 2864 ( 2001 ).
  • Zheng S , RolletM , PanYX . Maternal protein restriction during pregnancy induces CCAAT/enhancer-binding protein (C/EBPβ) expression through the regulation of histone modification at its promoter region in female offspring rat skeletal muscle . Epigenetics6 ( 2 ), 161 – 170 ( 2011 ).
  • Zhou D , PanYX . Gestational low protein diet selectively induces the amino acid response pathway target genes in the liver of offspring rats through transcription factor binding and histone modifications . Biochim. Biophys. Acta1809 ( 10 ), 549 – 556 ( 2011 ).
  • Nebendahl C , GörsS , AlbrechtEet al. Early postnatal feed restriction reduces liver connective tissue levels and affects H3K9 acetylation state of regulated genes associated with protein metabolism in low birth weight pigs . J. Nutr. Biochem.29 , 41 – 55 ( 2016 ).
  • Pinto G , ShtaifB , PhillipM , Gat-YablonskiG . Growth attenuation is associated with histone deacetylase 10-induced autophagy in the liver . J. Nutr. Biochem.27 , 171 – 180 ( 2016 ).
  • Gluckman PD , HansonMA , CooperC , ThornburgKL . Effect of in utero and early-life conditions on adult health and disease . N. Engl. J. Med.359 ( 1 ), 61 – 73 ( 2008 ).
  • Slater-Jefferies JL , LillycropKA , TownsendPAet al. Feeding a protein-restricted diet during pregnancy induces altered epigenetic regulation of peroxisomal proliferator-activated receptor-α in the heart of the offspring . J. Dev. Orig. Health Dis.2 ( 4 ), 250 – 255 ( 2011 ).
  • Carone BR , FauquierL , HabibNet al. Paternally-induced transgenerational environmental reprogramming of metabolic gene expression in mammals . Cell143 ( 7 ), 1084 – 1096 ( 2010 ).
  • Fuemmeler BF , Agurs-CollinsT , McclernonFJet al. Genes implicated in serotonergic and dopaminergic functioning predict BMI categories . Obesity16 ( 2 ), 348 – 355 ( 2008 ).
  • Ozanne SE , SandoviciI , ConstânciaM . Maternal diet, aging and diabetes meet at a chromatin loop . Aging3 ( 5 ), 548 – 554 ( 2011 ).
  • He A , ZhuL , GuptaN , ChangY , FangF . Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes . Mol. Endocrinol.21 ( 11 ), 2785 – 2794 ( 2007 ).
  • Xie X , LinT , ZhangMet al. IUGR with infantile overnutrition programs an insulin-resistant phenotype through DNA methylation of peroxisome proliferator-activated receptor-γ coactivator-1α in rats . Pediatr. Res.77 ( 5 ), 625 – 632 ( 2015 ).
  • Wang ND , FinegoldMJ , BradleyAet al. Impaired energy homeostasis in C/EBP alpha knockout mice . Science269 ( 5227 ), 1108 – 1112 ( 1995 ).
  • Wu KJ , WilsonDR , ShihC , DarlingtonGJ . The transcription factor HNF1 acts with C/EBP alpha to synergistically activate the human albumin promoter through a novel domain . J. Biol. Chem.269 ( 2 ), 1177 – 1182 ( 1994 ).
  • Van Straten EME , BloksVW , HuijkmanNCAet al. The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction . Am. J. Physiol. Regul. Integr. Comp. Physiol.298 ( 2 ), R275 – R282 ( 2010 ).
  • Ou Z , WadaT , GramignoliRet al. MicroRNA hsa-miR-613 targets the human LXRα gene and mediates a feedback loop of LXRα autoregulation . Mol. Endocrinol.25 ( 4 ), 584 – 596 ( 2011 ).
  • Martínez D , PentinatT , RibóSet al. In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered Lxra DNA methylation . Cell. Metab.19 ( 6 ), 941 – 951 ( 2014 ).
  • Lan F , CacicedoJM , RudermanN , IdoY . SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation . J. Biol. Chem.283 ( 41 ), 27628 – 27635 ( 2008 ).
  • Li X , ZhangS , BlanderG , TseJG , KriegerM , GuarenteL . SIRT1 deacetylates and positively regulates the nuclear receptor LXR . Mol. Cell28 ( 1 ), 91 – 106 ( 2007 ).
  • Repa JJ , MangelsdorfDJ . The role of orphan nuclear receptors in the regulation of cholesterol homeostasis . Annu. Rev. Cell Dev. Biol.16 , 459 – 481 ( 2000 ).
  • Sohi G , MarchandK , ReveszA , AranyE , HardyDB . Maternal protein restriction elevates cholesterol in adult rat offspring due to repressive changes in histone modifications at the cholesterol 7alpha-hydroxylase promoter . Mol. Endocrinol.25 ( 5 ), 785 – 798 ( 2011 ).
  • Cong R , JiaY , LiRet al. Maternal low-protein diet causes epigenetic deregulation of HMGCR and CYP7α1 in the liver of weaning piglets . J. Nutr. Biochem.23 ( 12 ), 1647 – 1654 ( 2012 ).
  • Karolina DS , TavintharanS , ArmugamAet al. Circulating miRNA profiles in patients with metabolic syndrome . J. Clin. Endocrinol. Metab.97 ( 12 ), E2271 – E2276 ( 2012 ).
  • Baselga-Escudero L , BladeC , Ribas-LatreAet al. Chronic supplementation of proanthocyanidins reduces postprandial lipemia and liver miR-33a and miR-122 levels in a dose-dependent manner in healthy rats . J. Nutr. Biochem.25 ( 2 ), 151 – 156 ( 2014 ).
  • Baselga-Escudero L , BladeC , Ribas-LatreAet al. Resveratrol and EGCG bind directly and distinctively to miR-33a and miR-122 and modulate divergently their levels in hepatic cells . Nucleic Acids Res.42 ( 2 ), 882 – 892 ( 2014 ).
  • Joven J , EspinelE , RullAet al. Plant-derived polyphenols regulate expression of miRNA paralogs miR-103/107 and miR-122 and prevent diet-induced fatty liver disease in hyperlipidemic mice . Biochim. Biophys. Acta1820 ( 7 ), 894 – 899 ( 2012 ).
  • Yang YM , SeoSY , KimTH , KimSG . Decrease of microRNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid . Hepatology56 ( 6 ), 2209 – 2220 ( 2012 ).
  • Ohno M , ShibataC , KishikawaTet al. The flavonoid apigenin improves glucose tolerance through inhibition of microRNA maturation in miRNA103 transgenic mice . Sci. Rep.3 , 2553 ( 2013 ).
  • Milenkovic D , DevalC , GourantonEet al. Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols . PLoS ONE7 ( 1 ), e29837 ( 2012 ).
  • Milenkovic D , JudeB , MorandC . miRNA as molecular target of polyphenols underlying their biological effects . Free Radic. Biol. Med.64 , 40 – 51 ( 2013 ).
  • Wang D , XiaM , YanXet al. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b . Circ. Res.111 ( 8 ), 967 – 981 ( 2012 ).
  • Price NL , GomesAP , LingAJYet al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function . Cell. Metab.15 ( 5 ), 675 – 690 ( 2012 ).
  • Tarry-Adkins JL , Martin-GronertMS , Fernandez-TwinnDSet al. Poor maternal nutrition followed by accelerated postnatal growth leads to alterations in DNA damage and repair, oxidative and nitrosative stress, and oxidative defense capacity in rat heart . FASEB J.27 ( 1 ), 379 – 390 ( 2013 ).
  • Hayes P , KnausUG . Balancing reactive oxygen species in the epigenome: NADPH oxidases as target and perpetrator . Antioxid. Redox Signal.18 ( 15 ), 1937 – 1945 ( 2013 ).
  • Valinluck V , TsaiHH , RogstadDK , BurdzyA , BirdA , SowersLC . Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2) . Nucleic acids Res.32 ( 14 ), 4100 – 4108 ( 2004 ).
  • Mckay JA , WalthamKJ , WilliamsEA , MathersJC . Folate depletion during pregnancy and lactation reduces genomic DNA methylation in murine adult offspring . Genes Nutr.6 ( 2 ), 189 – 196 ( 2011 ).
  • Tian X , DiazFJ . Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development . Dev. Biol.376 ( 1 ), 51 – 61 ( 2013 ).
  • Waterland RA , KellermayerR , LaritskyEet al. Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles . PLoS Genet.6 ( 12 ), e1001252 ( 2010 ).
  • Dominguez-Salas P , MooreSE , ColeDet al. DNA methylation potential: dietary intake and blood concentrations of one-carbon metabolites and cofactors in rural African women . Am. J. Clin. Nutr.97 ( 6 ), 1217 – 1227 ( 2013 ).
  • Dominguez-Salas P , MooreSE , BakerMSet al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles . Nat. Commun.5 , 3746 ( 2014 ).
  • Steegers-Theunissen RP , Obermann-BorstSA , KremerDet al. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child . PLoS ONE4 ( 11 ), e7845 ( 2009 ).
  • Lambrot R , XuC , Saint-PharSet al. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes . Nat. Commun.4 , 2889 ( 2013 ).
  • Burdge GC , LillycropKA , JacksonAA , GluckmanPD , HansonMA . The nature of the growth pattern and of the metabolic response to fasting in the rat are dependent upon the dietary protein and folic acid intakes of their pregnant dams and post-weaning fat consumption . Br. J. Nutr.99 ( 3 ), 540 – 549 ( 2008 ).
  • Lillycrop KA , PhillipsES , JacksonAA , HansonMA , BurdgeGC . Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring . J. Nutr.135 ( 6 ), 1382 – 1386 ( 2005 ).
  • Burdge GC , LillycropKA , PhillipsES , Slater-JefferiesJL , JacksonAA , HansonMA . Folic acid supplementation during the juvenile-pubertal period in rats modifies the phenotype and epigenotype induced by prenatal nutrition . J. Nutr.139 ( 6 ), 1054 – 1060 ( 2009 ).
  • Zhang L , HouD , ChenXet al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA . Cell Res.22 ( 1 ), 107 – 126 ( 2012 ).
  • Krützfeldt J , RajewskyN , BraichRet al. Silencing of microRNAs in vivo with ‘antagomirs’ . Nature438 ( 7068 ), 685 – 689 ( 2005 ).
  • Shibata C , KishikawaT , OtsukaMet al. Inhibition of microRNA122 decreases SREBP1 expression by modulating suppressor of cytokine signaling 3 expression . Biochem. Biophys. Res. Commun.438 ( 1 ), 230 – 235 ( 2013 ).
  • Elmén J , LindowM , SchützSet al. LNA-mediated microRNA silencing in non-human primates . Nature452 ( 7189 ), 896 – 899 ( 2008 ).
  • Wen J , FriedmanJR . miR-122 regulates hepatic lipid metabolism and tumor suppression . J. Clin. Invest.122 ( 8 ), 2773 – 2776 ( 2012 ).
  • Iliopoulos D , DrosatosK , HiyamaY , GoldbergIJ , ZannisVI . MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism . J. Lipid Res.51 ( 6 ), 1513 – 1523 ( 2010 ).
  • Rayner KJ , EsauCC , HussainFNet al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides . Nature478 ( 7369 ), 404 – 407 ( 2011 ).
  • Rottiers V , ObadS , PetriAet al. Pharmacological inhibition of a microRNA family in nonhuman primates by a seed-targeting 8-mer antimiR . Sci. Transl. Med.5 ( 212 ), 212ra162 ( 2013 ).
  • Horie T , NishinoT , BabaOet al. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice . Nat. Commun.4 , 2883 ( 2013 ).
  • Ramírez CM , GoedekeL , RotllanNet al. MicroRNA 33 regulates glucose metabolism . Mol. Cell. Biol.33 ( 15 ), 2891 – 2902 ( 2013 ).
  • Wilfred BR , WangWX , NelsonPT . Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways . Mol. Genet. Metab.91 ( 3 ), 209 – 217 ( 2007 ).
  • Ramaswamy G , KarimMA , MurtiKG , JackowskiS . PPARalpha controls the intracellular coenzyme A concentration via regulation of PANK1alpha gene expression . J. Lipid Res.45 ( 1 ), 17 – 31 ( 2004 ).
  • Trajkovski M , HausserJ , SoutschekJet al. MicroRNAs 103 and 107 regulate insulin sensitivity . Nature474 ( 7353 ), 649 – 653 ( 2011 ).
  • Foley NH , O’neillLA . miR-107: a Toll-like receptor-regulated miRNA dysregulated in obesity and Type 2 diabetes . J. Leukoc. Biol.92 ( 3 ), 521 – 527 ( 2012 ).
  • Catalioto RM , MaggiCA , GiulianiS . Chemically distinct HDAC inhibitors prevent adipose conversion of subcutaneous human white preadipocytes at an early stage of the differentiation program . Exp. Cell Res.315 ( 19 ), 3267 – 3280 ( 2009 ).
  • Hesketh J , WybranskaI , DommelsYet al. Nutrient–gene interactions in benefit-risk analysis . Br. J. Nutr.95 ( 6 ), 1232 – 1236 ( 2006 ).
  • Goni L , CuervoM , MilagroFI , MartinezJA . Future perspectives of personalized weight loss interventions based on nutrigenetic, epigenetic, and metagenomic data . J. Nutr. doi:10.3945/jn.115.218354 ( 2016 ) ( Epub ahead of print ).
  • Goni L , MilagroFI , CuervoM , MartinezJA . Single-nucleotide polymorphisms and DNA methylation markers associated with central obesity and regulation of body weight . Nutr. Rev.72 ( 11 ), 673 – 690 ( 2014 ).
  • Crujeiras AB , Diaz-LagaresA , Moreno-NavarreteJMet al. Genome-wide DNA methylation pattern in visceral adipose tissue differentiates insulin-resistant from insulin-sensitive obese subjects . Transl. Res.178 , 13e15 – 24e15 ( 2016 ).
  • Kohlmeier M , De CaterinaR , FergusonLRet al. Guide and position of the international society of nutrigenetics/nutrigenomics on personalized nutrition: part 2 – ethics, challenges and endeavors of precision nutrition . J. Nutrigenet. Nutrigenomics9 ( 1 ), 28 – 46 ( 2016 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.