204
Views
0
CrossRef citations to date
0
Altmetric
Review

Towards Quantitative Analysis of Gene Regulation by Enhancers

, , &
Pages 1219-1231 | Published online: 11 Aug 2017

References

  • Banerji J , RusconiS , SchaffnerW . Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences . Cell27 ( 2 Pt 1 ), 299 – 308 ( 1981 ).
  • Wasylyk B , WasylykC , ChambonP . Short and long range activation by the SV40 enhancer . Nucleic Acids Res.12 ( 14 ), 5589 – 5608 ( 1984 ).
  • Vokes SA , JiH , WongWH , McmahonAP . A genome-scale analysis of the cis-regulatory circuitry underlying sonic hedgehog-mediated patterning of the mammalian limb . Genes Dev.22 ( 19 ), 2651 – 2663 ( 2008 ).
  • Ghirlando R , GilesK , GowherHet al. Chromatin domains, insulators, and the regulation of gene expression . Biochim. Biophys. Acta1819 ( 7 ), 644 – 651 ( 2012 ).
  • Lenhard B , SandelinA , CarninciP . Metazoan promoters: emerging characteristics and insights into transcriptional regulation . Nat. Rev. Genet.13 ( 4 ), 233 – 245 ( 2012 ).
  • Maston GA , LandtSG , SnyderM , GreenMR . Characterization of enhancer function from genome-wide analyses . Annu. Rev. Genomics Hum. Genet.13 , 29 – 57 ( 2012 ).
  • Consortium EP . An integrated encyclopedia of DNA elements in the human genome . Nature489 ( 7414 ), 57 – 74 ( 2012 ).
  • Thurman RE , RynesE , HumbertRet al. The accessible chromatin landscape of the human genome . Nature489 ( 7414 ), 75 – 82 ( 2012 ).
  • Visel A , BlowMJ , LiZet al. ChIP-seq accurately predicts tissue-specific activity of enhancers . Nature457 ( 7231 ), 854 – 858 ( 2009 ).
  • Ernst J , KheradpourP , MikkelsenTSet al. Mapping and analysis of chromatin state dynamics in nine human cell types . Nature473 ( 7345 ), 43 – 49 ( 2011 ).
  • Pennacchio LA , AhituvN , MosesAMet al. In vivo enhancer analysis of human conserved non-coding sequences . Nature444 ( 7118 ), 499 – 502 ( 2006 ).
  • Slattery M , WhiteKP . Enhanced dissection of the regulatory genome . Nat. Methods10 ( 8 ), 710 – 712 ( 2013 ).
  • Chepelev I , WeiG , WangsaD , TangQ , ZhaoK . Characterization of genome-wide enhancer-promoter interactions reveals co-expression of interacting genes and modes of higher order chromatin organization . Cell Res.22 ( 3 ), 490 – 503 ( 2012 ).
  • Shlyueva D , StampfelG , StarkA . Transcriptional enhancers: from properties to genome-wide predictions . Nat. Rev. Genet.15 ( 4 ), 272 – 286 ( 2014 ).
  • Li G , RuanX , AuerbachRKet al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation . Cell148 ( 1–2 ), 84 – 98 ( 2012 ).
  • Ong CT , CorcesVG . Enhancer function: new insights into the regulation of tissue-specific gene expression . Nat. Rev. Genet.12 ( 4 ), 283 – 293 ( 2011 ).
  • Smith E , ShilatifardA . Enhancer biology and enhanceropathies . Nat. Struct. Mol. Biol.21 ( 3 ), 210 – 219 ( 2014 ).
  • Wamstad JA , WangX , DemurenOO , BoyerLA . Distal enhancers: new insights into heart development and disease . Trends Cell Biol.24 ( 5 ), 294 – 302 ( 2014 ).
  • Peeters JG , VervoortSJ , TanSCet al. Inhibition of super-enhancer activity in autoinflammatory site-derived T cells reduces disease-associated gene expression . Cell Rep.12 ( 12 ), 1986 – 1996 ( 2015 ).
  • Sur I , TaipaleJ . The role of enhancers in cancer . Nat. Rev. Cancer16 ( 8 ), 483 – 493 ( 2016 ).
  • Abraham BJ , HniszD , WeintraubASet al. Small genomic insertions form enhancers that misregulate oncogenes . Nat. Commun.8 , 14385 ( 2017 ).
  • Morey C , Da SilvaNR , KmitaM , DubouleD , BickmoreWA . Ectopic nuclear reorganisation driven by a Hoxb1 transgene transposed into Hoxd . J. Cell Sci.121 ( Pt 5 ), 571 – 577 ( 2008 ).
  • Gilbert N , BoyleS , FieglerH , WoodfineK , CarterNP , BickmoreWA . Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers . Cell118 ( 5 ), 555 – 566 ( 2004 ).
  • Naughton C , SproulD , HamiltonC , GilbertN . Analysis of active and inactive X chromosome architecture reveals the independent organization of 30 nm and large-scale chromatin structures . Mol. Cell40 ( 3 ), 397 – 409 ( 2010 ).
  • Elgin SC , ReuterG . Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila . Cold Spring Harb. Perspect. Biol.5 ( 8 ), a017780 ( 2013 ).
  • Gottschling DE , AparicioOM , BillingtonBL , ZakianVA . Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription . Cell63 ( 4 ), 751 – 762 ( 1990 ).
  • Hawkins RD , HonGC , LeeLKet al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells . Cell Stem Cell6 ( 5 ), 479 – 491 ( 2010 ).
  • Marks H , KalkanT , MenafraRet al. The transcriptional and epigenomic foundations of ground state pluripotency . Cell149 ( 3 ), 590 – 604 ( 2012 ).
  • Kellner WA , RamosE , Van BortleK , TakenakaN , CorcesVG . Genome-wide phosphoacetylation of histone H3 at Drosophila enhancers and promoters . Genome Res.22 ( 6 ), 1081 – 1088 ( 2012 ).
  • Jin C , ZangC , WeiGet al. H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions . Nat. Genet.41 ( 8 ), 941 – 945 ( 2009 ).
  • Golob JL , KumarRM , GuentherMGet al. Evidence that gene activation and silencing during stem cell differentiation requires a transcriptionally paused intermediate state . PLoS ONE6 ( 8 ), e22416 ( 2011 ).
  • Rada-Iglesias A , BajpaiR , SwigutT , BrugmannSA , FlynnRA , WysockaJ . A unique chromatin signature uncovers early developmental enhancers in humans . Nature470 ( 7333 ), 279 – 283 ( 2011 ).
  • Bonn S , ZinzenRP , GirardotCet al. Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development . Nat. Genet.44 ( 2 ), 148 – 156 ( 2012 ).
  • D’alessio JA , WrightKJ , TjianR . Shifting players and paradigms in cell-specific transcription . Mol. Cell36 ( 6 ), 924 – 931 ( 2009 ).
  • Weake VM , WorkmanJL . Inducible gene expression: diverse regulatory mechanisms . Nat. Rev. Genet.11 ( 6 ), 426 – 437 ( 2010 ).
  • Borggrefe T , YueX . Interactions between subunits of the Mediator complex with gene-specific transcription factors . Semin. Cell Dev. Biol.22 ( 7 ), 759 – 768 ( 2011 ).
  • Kulaeva OI , NizovtsevaEV , PolikanovYS , UlianovSV , StuditskyVM . Distant activation of transcription: mechanisms of enhancer action . Mol. Cell. Biol.32 ( 24 ), 4892 – 4897 ( 2012 ).
  • Haarhuis JHI , Van Der WeideRH , BlomenVAet al. The cohesin release factor WAPL restricts chromatin loop extension . Cell169 ( 4 ), 693 – 707.e14 ( 2017 ).
  • Uthe H , VanselowJT , SchlosserA . Proteomic analysis of the Mediator complex interactome in Saccharomyces cerevisiae . Sci. Rep.7 , 43584 ( 2017 ).
  • Petrenko N , JinY , WongKH , StruhlK . Mediator undergoes a compositional change during transcriptional activation . Mol. Cell64 ( 3 ), 443 – 454 ( 2016 ).
  • Allen BL , TaatjesDJ . The Mediator complex: a central integrator of transcription . Nat. Rev. Mol. Cell Biol.16 ( 3 ), 155 – 166 ( 2015 ).
  • Burley SK , RoederRG . Biochemistry and structural biology of transcription factor IID (TFIID) . Annu. Rev. Biochem.65 , 769 – 799 ( 1996 ).
  • Papai G , TripathiMK , RuhlmannC , LayerJH , WeilPA , SchultzP . TFIIA and the transactivator Rap1 cooperate to commit TFIID for transcription initiation . Nature465 ( 7300 ), 956 – 960 ( 2010 ).
  • Min IM , WaterfallJJ , CoreLJ , MunroeRJ , SchimentiJ , LisJT . Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells . Genes Dev.25 ( 7 ), 742 – 754 ( 2011 ).
  • Gilchrist DA , Dos SantosG , FargoDCet al. Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation . Cell143 ( 4 ), 540 – 551 ( 2010 ).
  • Cheng B , LiT , RahlPBet al. Functional association of Gdown1 with RNA polymerase II poised on human genes . Mol. Cell45 ( 1 ), 38 – 50 ( 2012 ).
  • Whyte WA , OrlandoDA , HniszDet al. Master transcription factors and mediator establish super-enhancers at key cell identity genes . Cell153 ( 2 ), 307 – 319 ( 2013 ).
  • Loven J , HokeHA , LinCYet al. Selective inhibition of tumor oncogenes by disruption of super-enhancers . Cell153 ( 2 ), 320 – 334 ( 2013 ).
  • Hnisz D , AbrahamBJ , LeeTIet al. Super-enhancers in the control of cell identity and disease . Cell155 ( 4 ), 934 – 947 ( 2013 ).
  • Niederriter AR , VarshneyA , ParkerSC , MartinDM . Super enhancers in cancers, complex disease, and developmental disorders . Genes6 ( 4 ), 1183 – 1200 ( 2015 ).
  • Hnisz D , ShrinivasK , YoungRA , ChakrabortyAK , SharpPA . A phase separation model for transcriptional control . Cell169 ( 1 ), 13 – 23 ( 2017 ).
  • Watson LA , TsaiLH . In the loop: how chromatin topology links genome structure to function in mechanisms underlying learning and memory . Curr. Opin. Neurobiol.43 , 48 – 55 ( 2016 ).
  • Long HK , PrescottSL , WysockaJ . Ever-changing landscapes: transcriptional enhancers in development and evolution . Cell167 ( 5 ), 1170 – 1187 ( 2016 ).
  • Adam RC , FuchsE . The yin and yang of chromatin dynamics in stem cell fate selection . Trends Genet.32 ( 2 ), 89 – 100 ( 2016 ).
  • Shore D , LangowskiJ , BaldwinRL . DNA flexibility studied by covalent closure of short fragments into circles . Proc. Natl Acad. Sci. USA78 ( 8 ), 4833 – 4837 ( 1981 ).
  • Cloutier TE , WidomJ . Spontaneous sharp bending of double-stranded DNA . Mol. Cell14 ( 3 ), 355 – 362 ( 2004 ).
  • Crothers DM , DrakJ , KahnJD , LeveneSD . DNA bending, flexibility, and helical repeat by cyclization kinetics . Methods Enzymol.212 , 3 – 29 ( 1992 ).
  • Stein A , DalalY , FleuryTJ . Circle ligation of in vitro assembled chromatin indicates a highly flexible structure . Nucleic Acids Res.30 ( 23 ), 5103 – 5109 ( 2002 ).
  • Vafabakhsh R , HaT . Extreme bendability of DNA less than 100 base pairs long revealed by single-molecule cyclization . Science337 ( 6098 ), 1097 – 1101 ( 2012 ).
  • Polikanov YS , StuditskyVM . Analysis of distant communication on defined chromatin templates in vitro . Methods Mol. Biol.543 , 563 – 576 ( 2009 ).
  • Polikanov YS , RubtsovMA , StuditskyVM . Biochemical analysis of enhancer-promoter communication in chromatin . Methods41 ( 3 ), 250 – 258 ( 2007 ).
  • Liu Y , BondarenkoV , NinfaA , StuditskyVM . DNA supercoiling allows enhancer action over a large distance . Proc. Natl Acad. Sci. USA98 ( 26 ), 14883 – 14888 ( 2001 ).
  • Bondarenko VA , LiuYV , JiangYI , StuditskyVM . Communication over a large distance: enhancers and insulators . Biochem. Cell Biol.81 ( 3 ), 241 – 251 ( 2003 ).
  • Bondarenko VA , JiangYI , StuditskyVM . Rationally designed insulator-like elements can block enhancer action in vitro . EMBO J.22 ( 18 ), 4728 – 4737 ( 2003 ).
  • Nizovtseva EV , ClauvelinN , TodolliSet al. Nucleosome-free DNA regions differentially affect distant communication in chromatin . Nucleic Acids Res.45 ( 6 ), 3059 – 3067 ( 2017 ).
  • Rubtsov MA , PolikanovYS , BondarenkoVA , WangYH , StuditskyVM . Chromatin structure can strongly facilitate enhancer action over a distance . Proc. Natl Acad. Sci. USA103 ( 47 ), 17690 – 17695 ( 2006 ).
  • Polikanov YS , BondarenkoVA , TchernaenkoVet al. Probability of the site juxtaposition determines the rate of protein-mediated DNA looping . Biophys. J.93 ( 8 ), 2726 – 2731 ( 2007 ).
  • Kulaeva OI , ZhengG , PolikanovYSet al. Internucleosomal interactions mediated by histone tails allow distant communication in chromatin . J. Biol. Chem.287 ( 24 ), 20248 – 20257 ( 2012 ).
  • Buffry AD , MendesCC , McgregorAP . The functionality and evolution of eukaryotic transcriptional enhancers . Adv. Genet.96 , 143 – 206 ( 2016 ).
  • Ramani V , DengX , QiuRet al. Massively multiplex single-cell Hi-C . Nat. Methods14 ( 3 ), 263 – 266 ( 2017 ).
  • Mundade R , OzerHG , WeiH , PrabhuL , LuT . Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond . Cell Cycle13 ( 18 ), 2847 – 2852 ( 2014 ).
  • Bowman SK . Discovering enhancers by mapping chromatin features in primary tissue . Genomics106 ( 3 ), 140 – 144 ( 2015 ).
  • Dekker J , RippeK , DekkerM , KlecknerN . Capturing chromosome conformation . Science295 ( 5558 ), 1306 – 1311 ( 2002 ).
  • Simonis M , KlousP , SplinterEet al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C) . Nat. Genet.38 ( 11 ), 1348 – 1354 ( 2006 ).
  • Zhao Z , TavoosidanaG , SjolinderMet al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions . Nat. Genet.38 ( 11 ), 1341 – 1347 ( 2006 ).
  • Ferraiuolo MA , SanyalA , NaumovaN , DekkerJ , DostieJ . From cells to chromatin: capturing snapshots of genome organization with 5C technology . Methods58 ( 3 ), 255 – 267 ( 2012 ).
  • Denker A , De LaatW . The second decade of 3C technologies: detailed insights into nuclear organization . Genes Dev.30 ( 12 ), 1357 – 1382 ( 2016 ).
  • Fullwood MJ , LiuMH , PanYFet al. An oestrogen-receptor-alpha-bound human chromatin interactome . Nature462 ( 7269 ), 58 – 64 ( 2009 ).
  • Kvon EZ . Using transgenic reporter assays to functionally characterize enhancers in animals . Genomics106 ( 3 ), 185 – 192 ( 2015 ).
  • Horlbeck MA , GilbertLA , VillaltaJEet al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation . eLife5 , e19760 ( 2016 ).
  • Thakore PI , D’ippolitoAM , SongLet al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements . Nat. Methods12 ( 12 ), 1143 – 1149 ( 2015 ).
  • Crocker J , SternDL . TALE-mediated modulation of transcriptional enhancers in vivo . Nat. Methods10 ( 8 ), 762 – 767 ( 2013 ).
  • Ruscio JZ , OnufrievA . A computational study of nucleosomal DNA flexibility . Biophys. J.91 ( 11 ), 4121 – 4132 ( 2006 ).
  • Materese CK , SavelyevA , PapoianGA . Counterion atmosphere and hydration patterns near a nucleosome core particle . J. Am. Chem. Soc.131 ( 41 ), 15005 – 15013 ( 2009 ).
  • Biswas M , LangowskiJ , BishopTC . Atomistic simulations of nucleosomes . WIREs Comput. Mol. Sci.3 , 378 – 392 ( 2013 ).
  • Shaytan AK , ArmeevGA , GoncearencoA , ZhurkinVB , LandsmanD , PanchenkoAR . Coupling between histone conformations and DNA geometry in nucleosomes on a microsecond timescale: atomistic insights into nucleosome functions . J. Mol. Biol.428 ( 1 ), 221 – 237 ( 2016 ).
  • Chien F-T , Van NoortJ . 10 years of tension on chromatin: results from single molecule force spectroscopy . Curr. Pharm. Biotechnol.10 ( 5 ), 474 – 485 ( 2009 ).
  • Mcghee JD , RauDC , CharneyE , FelsenfeldG . Orientation of the nucleosome within the higher order structure of chromatin . Cell22 ( 1 Pt 1 ), 87 – 96 ( 1980 ).
  • Schwarz PM , FelthauserA , FletcherTM , HansenJC . Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains . Biochemistry35 , 4009 – 4015 ( 1996 ).
  • Schalch T , DudaS , SargentDF , RichmondTJ . X-ray structure of a tetranucleosome and its implications for the chromatin fibre . Nature436 ( 7047 ), 138 – 141 ( 2005 ).
  • Robinson PJ , FairallL , HuynhVA , RhodesD . EM measurements define the dimensions of the “30 nm” chromatin fiber: evidence for a compact, interdigitated structure . Proc. Natl Acad. Sci. USA103 ( 17 ), 6506 – 6511 ( 2006 ).
  • Grigoryev SA , AryaG , CorrellS , WoodcockCL , SchlickT . Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions . Proc. Natl Acad. Sci. USA106 ( 32 ), 13317 – 13322 ( 2009 ).
  • Olson WK , ClauvelinN , ColasantiAV , SinghG , ZhengG . Insights into gene expression and packaging from computer simulations . Biophys. Revs.4 ( 3 ), 171 – 178 ( 2012 ).
  • Clauvelin N , LoP , KulaevaOIet al. Nucleosome positioning and composition modulate in silico chromatin flexibility . J. Phys. Condens. Matter27 ( 6 ), 064112 ( 2015 ).
  • Katritch V , BustamanteC , OlsonWK . Pulling chromatin fibers: computer simulations of direct physical micromanipulations . J. Mol. Biol.295 ( 1 ), 29 – 40 ( 2000 ).
  • Wedemann G , LangowskiJ . Computer simulation of the 30-nanometer chromatin fiber . Biophys. J.82 ( 6 ), 2847 – 2859 ( 2002 ).
  • Davey CA , SargentDF , LugerK , MaederAW , RichmondTJ . Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution . J. Mol. Biol.319 ( 5 ), 1097 – 1113 ( 2002 ).
  • Murakami KS , MasudaS , DarstSA . Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 Å resolution . Science296 ( 5571 ), 1280 – 1284 ( 2002 ).
  • Lee S-Y , De La TorreA , YanD , KustuS , NixonBT , WemmerDE . Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains . Genes Dev.17 ( 20 ), 2552 – 2563 ( 2003 ).
  • De Carlo S , ChenB , HooverTR , KondrashkinaE , NogalesE , NixonT . The structural basis for regulated assembly and function of the transcriptional activator NtrC . Genes Dev.20 ( 11 ), 1485 – 1495 ( 2006 ).
  • Czapla L , SwigonD , OlsonWK . Sequence-dependent effects in the cyclization of short DNA . J. Chem. Theor. Comput.2 ( 3 ), 685 – 695 ( 2006 ).
  • Arya G , SchlickT . A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments . J. Phys. Chem. A113 , 4045 – 4059 ( 2009 ).
  • Luger K , MaderAW , RichmondRK , SargentDF , RichmondTJ . Crystal structure of the nucleosome core particle at 2.8 A resolution . Nature389 ( 6648 ), 251 – 260 ( 1997 ).
  • Ben-Haïm E , LesneA , VictorJ-M . Chromatin: a tunable spring at work inside chromosomes . Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64 ( 5 Pt. 1 ), 051921 ( 2001 ).
  • Koslover EF , FullerCJ , StraightAF , SpakowitzAJ . Local geometry and elasticity in compact chromatin structure . Biophys J.99 ( 12 ), 3941 – 3950 ( 2010 ).
  • Scipioni A , TurchettiG , MorosettiS , De SantisP . Geometrical, conformational and topological restraints in regular nucleosome compaction in chromatin . Biophys Chem.148 ( 1–3 ), 56 – 67 ( 2010 ).
  • Norouzi D , ZhurkinVB . Topological polymorphism of the two-start chromatin fiber . Biophys J.108 ( 10 ), 2591 – 2600 ( 2015 ).
  • Grigoryev SA , BascomG , BuckwalterJM , SchubertMB , WoodcockCL , SchlickT . Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes . Proc. Natl Acad. Sci. USA113 ( 5 ), 1238 – 1243 ( 2016 ).
  • Spitz F . Gene regulation at a distance: from remote enhancers to 3D regulatory ensembles . Semin. Cell Dev. Biol.57 , 57 – 67 ( 2016 ).
  • Cutter AR , HayesJJ . A brief review of nucleosome structure . FEBS Lett.589 ( 20 Pt A ), 2914 – 2922 ( 2015 ).
  • Laybourn PJ , KadonagaJT . Threshold phenomena and long-distance activation of transcription by RNA polymerase II . Science257 ( 5077 ), 1682 – 1685 ( 1992 ).
  • Won H , De La Torre-UbietaL , SteinJLet al. Chromosome conformation elucidates regulatory relationships in developing human brain . Nature538 ( 7626 ), 523 – 527 ( 2016 ).
  • Vermunt MW , CreyghtonMP . Transcriptional dynamics at brain enhancers: from functional specialization to neurodegeneration . Curr. Neurol. Neurosci. Rep.16 ( 10 ), 94 ( 2016 ).
  • Gordon F , LugerK , HansenJC . The core histone N-terminal tail domains function independently and additively during salt-dependent oligomerization of nucleosomal arrays . J. Biol. Chem.280 ( 40 ), 33701 – 33706 ( 2005 ).
  • Kan PY , LuX , HansenJC , HayesJJ . The H3 tail domain participates in multiple interactions during folding and self-association of nucleosome arrays . Mol. Cell. Biol.27 ( 6 ), 2084 – 2091 ( 2007 ).
  • Mukhopadhyay S , SchedlP , StuditskyVM , SenguptaAM . Theoretical analysis of the role of chromatin interactions in long-range action of enhancers and insulators . Proc. Natl Acad. Sci. USA108 ( 50 ), 19919 – 19924 ( 2011 ).
  • Boedicker JQ , GarciaHG , JohnsonS , PhillipsR . DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation . Phys. Biol.10 ( 6 ), 066005 ( 2013 ).
  • Diesinger PM , KunkelS , LangowskiJ , HeermannDW . Histone depletion facilitates chromatin loops on the kilobasepair scale . Biophys. J.99 ( 9 ), 2995 – 3001 ( 2010 ).
  • Rao SSP , HuntleyMH , DurandNCet al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping . Cell159 ( 7 ), 1665 – 1680 ( 2014 ).
  • Sanborn AL , RaoSSP , HuangS-Cet al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes . Proc. Natl Acad. Sci. USA112 ( 47 ), E6456 – E6465 ( 2015 ).
  • Todolli S , PerezPJ , ClauvelinN , OlsonWK . Contributions of sequence to the higher-order structures of DNA . Biophys. J.112 ( 3 ), 416 – 426 ( 2017 ).
  • Brogaard K , XiL , WangJ-P , WidomJ . A map of nucleosome positions in yeast at base-pair resolution . Nat. Protoc.486 ( 7404 ), 496 – 501 ( 2012 ).
  • Moyle-Heyrman G , ZaichukT , XiLet al. Chemical map of Schizosaccharomyces pombe reveals species-specific features in nucleosome positioning . Proc. Natl Acad. Sci. USA110 ( 50 ), 20158 – 20163 ( 2013 ).
  • Cui F , ChenL , LoversoPR , ZhurkinVB . Prediction of nucleosome rotational positioning in yeast and human genomes based on sequence-dependent DNA anisotropy . BMC Bioinformatics15 , 313 ( 2014 ).
  • Mcginty RK , HenriciRC , TanS . Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome . Nature514 ( 7524 ), 591 – 596 ( 2014 ).
  • Zhou B-R , FengH , KatoHet al. Structural insights into the histone H1-nucleosome complex . Proc. Natl Acad. Sci. USA110 ( 48 ), 19390 – 19395 ( 2013 ).
  • Zhou B-R , JiangJ , FengH , GhirlandoR , XiaoTS , BaiY . Structural mechanisms of nucleosome recognition by linker histones . Mol. Cell59 ( 4 ), 628 – 638 ( 2015 ).
  • Cole HA , HowardBH , ClarkDJ . The centromeric nucleosome of budding yeast is perfectly positioned and covers the entire centromere . Proc. Natl Acad. Sci. USA108 ( 31 ), 12687 – 12692 ( 2011 ).
  • Murakami KS , MasudaS , CampbellEA , MuzzinO , DarstSA . Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex . Science296 ( 5571 ), 1285 – 1290 ( 2002 ).
  • Bae B , FeklistovA , Lass-NapiorkowskaA , LandickR , DarstSA . Structure of a bacterial RNA polymerase holoenzyme open promoter complex . eLife4 , e08504 ( 2015 ).
  • Pelton JG , KustuS , WemmerDE . Solution structure of the DNA-binding domain of NtrC with three alanine substitutions . J. Mol. Biol.292 ( 5 ), 1095 – 1110 ( 1999 ).
  • Batchelor JD , DoucleffM , LeeC-Jet al. Structure and regulatory mechanism of Aquifex aeolicus NtrC4: variability and evolution in bacterial transcriptional regulation . J. Mol. Biol.384 ( 5 ), 1058 – 1075 ( 2008 ).
  • Stella S , CascioD , JohnsonRC . The shape of the DNA minor groove directs binding by the DNA-bending protein Fis . Genes Dev.24 ( 8 ), 814 – 826 ( 2010 ).
  • Davey CA , SargentDF , LugerK , MäderAW , RichmondTJ . Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution . J. Mol. Biol.319 , 1087 – 1113 ( 2002 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.