309
Views
0
CrossRef citations to date
0
Altmetric
Research Article

NGS-Based Methylation Profiling Differentiates TCF3-HLF and TCF3-PBX1 Positive B-cell Acute Lymphoblastic Leukemia

, , , , , , , , & show all
Pages 133-147 | Received 26 Jun 2017, Accepted 12 Oct 2017, Published online: 15 Jan 2018

References

  • Gutierrez MI , SirajAK , BhargavaMet al. Concurrent methylation of multiple genes in childhood ALL: correlation with phenotype and molecular subgroup . Leukemia17 ( 9 ), 1845 – 1850 ( 2003 ).
  • Pui C-H , RobisonLL , LookAT . Acute lymphoblastic leukaemia . Lancet371 ( 9617 ), 1030 – 1043 ( 2008 ).
  • Tijchon E , HavingaJ , van LeeuwenFN , ScheijenB . B-lineage transcription factors and cooperating gene lesions required for leukemia development . Leukemia27 , 541 – 552 ( 2013 ).
  • Loh ML , MullighanCG . Advances in the genetics of high-risk childhood B-progenitor acute lymphoblastic leukemia and juvenile myelomonocytic leukemia: implications for therapy . Clin. Cancer Res.18 ( 10 ), 2754 – 2767 ( 2012 ).
  • Stanulla M , SchrappeM . Treatment of childhood acute lymphoblastic leukemia . Semin. Hematol.46 ( 1 ), 52 – 63 ( 2009 ).
  • Hunger SP . Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: clinical features and molecular pathogenesis . Blood87 ( 4 ), 1211 – 1224 ( 1996 ).
  • Mellentin JD , MurreC , DonlonTAet al. The gene for enhancer binding proteins E12/E47 lies at the t(1;19) breakpoint in acute leukemias . Science246 ( 4928 ), 379 – 382 ( 1989 ).
  • Asai D , ImamuraT , YamashitaYet al. Outcome of TCF3-PBX1 positive pediatric acute lymphoblastic leukemia patients in Japan: a collaborative study of Japan Association of Childhood Leukemia Study (JACLS) and Children’s Cancer and Leukemia Study Group (CCLSG) . Cancer Med.3 , 623 – 631 ( 2014 ).
  • Felice MS , GallegoMS , AlonsoCNet al. Prognostic impact of t(1;19)/TCF3-PBX1 in childhood acute lymphoblastic leukemia in the context of Berlin-Frankfurt-Munster-based protocols . Leuk. Lymphoma52 , 1215 – 1221 ( 2011 ).
  • Inaba T , RobertsWM , ShapiroLHet al. Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia . Science257 , 531 – 534 ( 1992 ).
  • Panagopoulos I , MicciF , ThorsenJet al. A novel TCF3-HLF fusion transcript in acute lymphoblastic leukemia with a t(17;19)(q22;p13) . Cancer Genet.205 , 669 – 672 ( 2012 ).
  • Raimondi SC , PriviteraE , WilliamsDLet al. New recurring chromosomal translocations in childhood acute lymphoblastic leukemia . Blood77 , 2016 – 2022 ( 1991 ).
  • Hunger SP , OhyashikiK , ToyamaK , ClearyML . Hlf, a novel hepatic bZIP protein, shows altered DNA-binding properties following fusion to E2A in t(17;19) acute lymphoblastic leukemia . Genes Dev.6 ( 9 ), 1608 – 1620 ( 1992 ).
  • Inukai T , HiroseK , InabaTet al. Hypercalcemia in childhood acute lymphoblastic leukemia: frequent implication of parathyroid hormone-related peptide and E2A-HLF from translocation 17;19 . Leukemia21 ( 2 ), 288 – 296 ( 2007 ).
  • Glover JM , LoriauxM , TynerJW , DrukerBJ , ChangBH . In vitro sensitivity to dasatinib in lymphoblasts from a patient with t(17;19)(q22;p13) gene rearrangement pre-B acute lymphoblastic leukemia . Pediatr. Blood Cancer59 ( 3 ), 576 – 579 ( 2012 ).
  • Honda H , InabaT , SuzukiTet al. Expression of E2A-HLF chimeric protein induced T-cell apoptosis, B-cell maturation arrest, and development of acute lymphoblastic leukemia . Blood93 ( 9 ), 2780 – 2790 ( 1999 ).
  • Smith KS , RheeJW , NaumovskiL , ClearyML . Disrupted differentiation and oncogenic transformation of lymphoid progenitors in E2A-HLF transgenic mice . Mol. Cell. Biol.19 , 4443 – 4451 ( 1999 ).
  • Zhang X , InukaiT , HiroseKet al. Oncogenic fusion E2A-HLF sensitizes t(17;19)-positive acute lymphoblastic leukemia to TRAIL-mediated apoptosis by upregulating the expression of death receptors . Leukemia26 ( 12 ), 2483 – 2493 ( 2012 ).
  • Hirai M , YagasakiH , FujimuraJet al. Successful preemptive donor lymphocyte infusions from a haploidentical donor in a boy with E2A-HLF-positive ALL . Leuk. Lymphoma doi:10.1080/10428194.2017.1347927 ( 2017 ) ( Epub ahead of print ).
  • Fischer U , ForsterM , RinaldiAet al. Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options . Nat. Genet.47 ( 9 ), 1020 – 1029 ( 2015 ).
  • Milani L , LundmarkA , KiialainenAet al. DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia . Blood115 ( 6 ), 1214 – 1225 ( 2010 ).
  • Portela A , EstellerM . Epigenetic modifications and human disease . Nat. Biotechnol.28 , 1057 – 1068 ( 2010 ).
  • You JS , JonesPA . Cancer genetics and epigenetics: two sides of the same coin?Cancer Cell22 , 9 – 20 ( 2012 ).
  • Ivanov M , KacevskaM , Ingelman-SundbergM . Epigenomics and interindividual differences in drug response . Clin. Pharmacol. Ther.92 ( 6 ), 727 – 736 ( 2012 ).
  • Garcia-Gimenez JL , Sanchis-GomarF , LippiGet al. Epigenetic biomarkers: a new perspective in laboratory diagnostics . Clin. Chim. Acta413 , 1576 – 1582 ( 2012 ).
  • How Kit A , NielsenHM , TostJ . DNA methylation based biomarkers: practical considerations and applications . Biochimie94 , 2314 – 2337 ( 2012 ).
  • Geng H , BrennanS , MilneTAet al. Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia . Cancer Discov.2 , 1004 – 1023 ( 2012 ).
  • Laird PW . The power and the promise of DNA methylation markers . Nat. Rev. Cancer3 , 253 – 266 ( 2003 ).
  • Nogueira da Costa A , HercegZ . Detection of cancer-specific epigenomic changes in biofluids: powerful tools in biomarker discovery and application . Mol. Oncol.6 , 704 – 715 ( 2012 ).
  • Davidsson J , LilljebjörnH , AnderssonAet al. The DNA methylome of pediatric acute lymphoblastic leukemia . Hum. Mol. Genet.18 ( 21 ), 4054 – 4065 ( 2009 ).
  • Hogan LE , MeyerJA , YangJet al. Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies . Blood118 ( 19 ), 5218 – 5226 ( 2011 ).
  • Musialik E , BujkoM , KoberPet al. Promoter methylation and expression levels of selected hematopoietic genes in pediatric B-cell acute lymphoblastic leukemia . Blood Res.50 , 26 – 32 ( 2015 ).
  • Nordlund J , BäcklinCL , WahlbergPet al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia . Genome Biol.14 ( 9 ), r105 ( 2013 ).
  • Nordlund J , MilaniL , LundmarkA , LönnerholmG , SyvänenA-C . DNA methylation analysis of bone marrow cells at diagnosis of acute lymphoblastic leukemia and at remission . PLoS ONE7 ( 4 ), e34513 ( 2012 ).
  • Busche S , GeB , VidalRet al. Integration of high-resolution methylome and transcriptome analyses to dissect epigenomic changes in childhood acute lymphoblastic leukemia . Cancer Res.73 , 4323 – 4336 ( 2013 ).
  • Irizarry RA , Ladd-AcostaC , WenBet al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores . Nat. Genet.41 , 178 – 186 ( 2009 ).
  • Jones PA , BaylinSB . The epigenomics of cancer . Cell128 , 683 – 692 ( 2007 ).
  • Lee ST , MuenchMO , FominMEet al. Epigenetic remodeling in B-cell acute lymphoblastic leukemia occurs in two tracks and employs embryonic stem cell-like signatures . Nucleic Acids Res.43 , 2590 – 2602 ( 2015 ).
  • Lee ST , XiaoY , MuenchMOet al. A global DNA methylation and gene expression analysis of early human B-cell development reveals a demethylation signature and transcription factor network . Nucleic Acids Res.40 , 11339 – 11351 ( 2012 ).
  • Smallwood SA , KelseyG . Genome-wide analysis of DNA methylation in low cell numbers by reduced representation bisulfite sequencing . Methods Mol. Biol.925 , 187 – 197 ( 2012 ).
  • Gu H , SmithZD , BockC , BoyleP , GnirkeA , MeissnerA . Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling . Nat Protoc.6 , 468 – 481 ( 2011 ).
  • Martin M . Cutadapt removes adapter sequences from high-throughput sequencing reads . EMBnet J.17 ( 1 ), 10 – 12 ( 2011 ).
  • Krueger F , AndrewsSR . Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications . Bioinformatics27 , 1571 – 1572 ( 2011 ).
  • Park Y , FigueroaME , RozekLS , SartorMA . MethylSig: a whole genome DNA methylation analysis pipeline . Bioinformatics30 ( 17 ), 2414 – 2422 ( 2014 ).
  • Lawrence M , GentlemanR , CareyV . rtracklayer: an R package for interfacing with genome browsers . Bioinformatics25 , 1841 – 1842 ( 2009 ).
  • Hebestreit K , DugasM , KleinH-U . Detection of significantly differentially methylated regions in targeted bisulfite sequencing data . Bioinformatics29 , 1647 – 1653 ( 2013 ).
  • Benjamini Y , HochbergY . Controlling the false discovery rate: a practical and powerful approach to multiple testing . J. Roy. Stat. Soc. B. Met.57 , 289 – 300 ( 1995 ).
  • Slieker RC , BosSD , GoemanJJet al. Identification and systematic annotation of tissue-specific differentially methylated regions using the Illumina 450k array . Epigenetics Chromatin.6 ( 1 ), 26 ( 2013 ).
  • Kim D , PerteaG , TrapnellC , PimentelH , KelleyR , SalzbergSL . TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions . Genome Biol.14 , R36 ( 2013 ).
  • Langmead B , SalzbergSL . Fast gapped-read alignment with Bowtie 2 . Nat. Methods9 , 357 – 359 ( 2012 ).
  • Anders S , PylPT , HuberW . HTSeq – a Python framework to work with high-throughput sequencing data . Bioinformatics31 , 166 – 169 ( 2015 ).
  • Robinson MD , McCarthyDJ , SmythGK . EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data . Bioinformatics26 , 139 – 140 ( 2010 ).
  • Zhu LJ , GazinC , LawsonNDet al. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data . BMC Bioinformatics11 , 237 ( 2010 ).
  • Cabrera CP , NavarroP , HuffmanJEet al. Uncovering networks from genome-wide association studies via circular genomic permutation . G3 (Bethesda)2 ( 9 ), 1067 – 1075 ( 2012 ).
  • Kamburov A , PentchevK , GalickaH , WierlingC , LehrachH , HerwigR . ConsensusPathDB: toward a more complete picture of cell biology . Nucleic Acids Res.39 , D712 – D717 ( 2011 ).
  • Shannon P , MarkielA , OzierOet al. Cytoscape: a software environment for integrated models of biomolecular interaction networks . Genome Res.13 ( 11 ), 2498 – 2504 ( 2003 ).
  • Kanehisa M , SatoY , KawashimaM , FurumichiM , TanabeM . KEGG as a reference resource for gene and protein annotation . Nucleic Acids Res.44 ( D1 ), D457 – D462 ( 2015 ).
  • Szklarczyk D , FranceschiniA , WyderSet al. STRING v10: protein–protein interaction networks, integrated over the tree of life . Nucleic Acids Res.43 , D447 – D452 ( 2015 ).
  • Chen Y , LemireM , ChoufaniSet al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray . Epigenetics8 ( 2 ), 203 – 209 ( 2013 ).
  • Chuang TJ , ChenFC , ChenYZ . Position-dependent correlations between DNA methylation and the evolutionary rates of mammalian coding exons . Proc. Natl Acad. Sci. USA109 ( 39 ), 15841 – 15846 ( 2012 ).
  • Do C , LangCF , LinJet al. Mechanisms and disease associations of haplotype-dependent allele-specific DNA methylation . Am. J. Hum. Genet.98 ( 5 ), 934 – 955 ( 2016 ).
  • Wang Y , YuS-J , LiY-X , LuoH-S . Expression and clinical significance of matrix metalloproteinase-17 and-25 in gastric cancer . Oncol. Lett.9 ( 2 ), 671 – 676 ( 2015 ).
  • Sun Q , WeberCR , SohailAet al. MMP25 (MT6-MMP) is highly expressed in human colon cancer, promotes tumor growth, and exhibits unique biochemical properties . J. Biol. Chem.282 ( 30 ), 21998 – 22010 ( 2007 ).
  • Uzawa K , KasamatsuA , BabaTet al. Targeting phosphodiesterase 3B enhances cisplatin sensitivity in human cancer cells . Cancer Med.2 ( 1 ), 40 – 49 ( 2013 ).
  • Tsukahara T , MatsudaY , HaniuH . Cyclic phosphatidic acid stimulates cAMP production and inhibits growth in human colon cancer cells . PLoS ONE8 ( 11 ), e81139 ( 2013 ).
  • Moon E , LeeR , NearR , WeintraubL , WoldaS , LernerA . Inhibition of PDE3B augments PDE4 inhibitor-induced apoptosis in a subset of patients with chronic lymphocytic leukemia . Clin. Cancer Res.8 ( 2 ), 589 – 595 ( 2002 ).
  • Lu X , LvXD , RenYHet al. Dysregulation of TFDP1 and of the cell cycle pathway in high-grade glioblastoma multiforme: a bioinformatic analysis . Genet. Mol. Res.15 ( 2 ), gmr7646 ( 2016 ).
  • Barh D , JainN , TiwariSet al. A novel in silico reverse-transcriptomics-based identification and blood-based validation of a panel of sub-type specific biomarkers in lung cancer . BMC Genomics14 ( Suppl. 6 ), S5 ( 2013 ).
  • Wang G , WangH , ZhangCet al. Rac3 regulates cell proliferation through cell cycle pathway and predicts prognosis in lung adenocarcinoma . Tumor Biol.37 ( 9 ), 12597 – 12607 ( 2016 ).
  • Moscovich M , LeDouxMS , XiaoJet al. Dystonia, facial dysmorphism, intellectual disability and breast cancer associated with a chromosome 13q34 duplication and overexpression of TFDP1: case report . BMC Med. Genet.13 ( 14 ), 70 ( 2013 ).
  • Mota A , TriviñoJC , Rojo-SebastianAet al. Intra-tumor heterogeneity in TP53 null high grade serous ovarian carcinoma progression . BMC Cancer15 ( 1 ), 940 ( 2015 ).
  • Tracey L , AggarwalM , Garc’ia-CosioMet al. Somatic hypermutation signature in B-cell low-grade lymphomas . Haematologica93 ( 8 ), 1186 – 1194 ( 2008 ).
  • Muehlich S , HamplV , KhalidSet al. The transcriptional coactivators megakaryoblastic leukemia 1/2 mediate the effects of loss of the tumor suppressor deleted in liver cancer 1 . Oncogene31 ( 35 ), 3913 – 3923 ( 2012 ).
  • Wang D , QianX , RajaramM , DurkinME , LowyDR . DLC1 is the principal biologically-relevant down-regulated DLC family member in several cancers . Oncotarget7 ( 29 ), 45144 – 45157 ( 2016 ).
  • Fu H , WuD , ZhouH , ShenJ . CpG island methylator phenotype and its relationship with prognosis in adult acute leukemia patients . Hematology19 ( 6 ), 329 – 337 ( 2014 ).
  • Si X , LiuY , LvJet al. ERalpha propelled aberrant global DNA hypermethylation by activating the DNMT1 gene to enhance anticancer drug resistance in human breast cancer cells . Oncotarget7 ( 15 ), 20966 – 20980 ( 2016 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.