205
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Epigenetic profiles in polyglutamine disorders

, &
Pages 9-25 | Received 20 Jul 2017, Accepted 28 Sep 2017, Published online: 27 Nov 2017

References

  • Gatchel JR , ZoghbiHY . Diseases of unstable repeat expansion: mechanisms and common principles . Nat. Rev. Genet.6 ( 10 ), 743 – 755 ( 2005 ).
  • Matos CA , De Macedo-RibeiroS , CarvalhoAL . Polyglutamine diseases: the special case of ataxin-3 and Machado–Joseph disease . Prog. Neurobiol.95 ( 1 ), 26 – 48 ( 2011 ).
  • Shao J , DiamondMI . Polyglutamine diseases: emerging concepts in pathogenesis and therapy . Hum. Mol. Genet.16 ( 2 ), R115 – R123 ( 2007 ).
  • Mccolgan P , TabriziSJ . Huntington’s disease: a clinical review . Eur. J. Neurol. doi:10.1111/ene.13413 ( 2017 ) ( Epub ahead of print ).
  • Ramachandra NB , KusumaL . An understanding of spinocerebellar ataxia . Indian J. Med. Res.141 ( 2 ), 148 – 150 ( 2015 ).
  • Schols L , BauerP , SchmidtT , SchulteT , RiessO . Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis . Lancet Neurol.3 ( 5 ), 291 – 304 ( 2004 ).
  • Zoghbi HY , OrrHT . Glutamine repeats and neurodegeneration . Annu. Rev. Neurosci.23 , 217 – 247 ( 2000 ).
  • Ishikawa K , FujigasakiH , SaegusaHet al. Abundant expression and cytoplasmic aggregations of [alpha]1A voltage-dependent calcium channel protein associated with neurodegeneration in spinocerebellar ataxia type 6 . Hum. Mol. Genet.8 ( 7 ), 1185 – 1193 ( 1999 ).
  • Norremolle A , SorensenSA , FengerK , HasholtL . Correlation between magnitude of CAG repeat length alterations and length of the paternal repeat in paternally inherited Huntington’s disease . Clin. Genet.47 ( 3 ), 113 – 117 ( 1995 ).
  • Maciel P , GasparC , DestefanoALet al. Correlation between CAG repeat length and clinical features in Machado–Joseph disease . Am. J. Hum. Genet.57 ( 1 ), 54 – 61 ( 1995 ).
  • Ciechanover A , BrundinP . The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg . Neuron40 ( 2 ), 427 – 446 ( 2003 ).
  • Liu H , LiX , NingGet al. The Machado–Joseph disease deubiquitinase ataxin-3 regulates the stability and apoptotic function of p53 . PLoS Biol.14 ( 11 ), e2000733 ( 2016 ).
  • Illuzzi JL , VickersCA , KmiecEB . Modifications of p53 and the DNA damage response in cells expressing mutant form of the protein huntingtin . J. Mol. Neurosci.45 ( 2 ), 256 – 268 ( 2011 ).
  • Cohen-Carmon D , MeshorerE . Polyglutamine (polyQ) disorders: the chromatin connection . Nucleus3 ( 5 ), 433 – 441 ( 2012 ).
  • Bezprozvanny I . Role of inositol 1,4,5-trisphosphate receptors in pathogenesis of Huntington’s disease and spinocerebellar ataxias . Neurochem. Res.36 ( 7 ), 1186 – 1197 ( 2011 ).
  • Bezprozvanny I . Calcium signaling and neurodegenerative diseases . Trends Mol. Med.15 ( 3 ), 89 – 100 ( 2009 ).
  • Li X , LiuH , FischhaberPL , TangTS . Toward therapeutic targets for SCA3: insight into the role of Machado–Joseph disease protein ataxin-3 in misfolded proteins clearance . Prog. Neurobiol.132 , 34 – 58 ( 2015 ).
  • Bauer PO , NukinaN . The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies . J. Neurochem.110 ( 6 ), 1737 – 1765 ( 2009 ).
  • Taylor JP , TanakaF , RobitschekJet al. Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein . Hum. Mol. Genet.12 ( 7 ), 749 – 757 ( 2003 ).
  • Li M , Chevalier-LarsenES , MerryDE , DiamondMI . Soluble androgen receptor oligomers underlie pathology in a mouse model of spinobulbar muscular atrophy . J. Biol. Chem.282 ( 5 ), 3157 – 3164 ( 2007 ).
  • Arrasate M , MitraS , SchweitzerES , SegalMR , FinkbeinerS . Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death . Nature431 ( 7010 ), 805 – 810 ( 2004 ).
  • Klement IA , SkinnerPJ , KaytorMDet al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice . Cell95 ( 1 ), 41 – 53 ( 1998 ).
  • Saudou F , FinkbeinerS , DevysD , GreenbergME . Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions . Cell95 ( 1 ), 55 – 66 ( 1998 ).
  • Adwan L , ZawiaNH . Epigenetics: a novel therapeutic approach for the treatment of Alzheimer’s disease . Pharmacol. Ther.139 ( 1 ), 41 – 50 ( 2013 ).
  • Klose RJ , BirdAP . Genomic DNA methylation: the mark and its mediators . Trends Biochem. Sci.31 ( 2 ), 89 – 97 ( 2006 ).
  • Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond . Nat. Rev. Genet.13 ( 7 ), 484 – 492 ( 2012 ).
  • Illingworth RS , BirdAP . CpG islands – ‘a rough guide’ . FEBS Lett.583 ( 11 ), 1713 – 1720 ( 2009 ).
  • Thomas B , MatsonS , ChopraVet al. A novel method for detecting 7-methyl guanine reveals aberrant methylation levels in Huntington disease . Anal. Biochem.436 ( 2 ), 112 – 120 ( 2013 ).
  • Guo JU , SuY , ShinJHet al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain . Nat. Neurosci.17 ( 2 ), 215 – 222 ( 2014 ).
  • Ziller MJ , GuH , MullerFet al. Charting a dynamic DNA methylation landscape of the human genome . Nature500 ( 7463 ), 477 – 481 ( 2013 ).
  • Flores K , WolschinF , CorneveauxJJ , AllenAN , HuentelmanMJ , AmdamGV . Genome-wide association between DNA methylation and alternative splicing in an invertebrate . BMC Genomics13 , 480 ( 2012 ).
  • Lyko F , ForetS , KucharskiR , WolfS , FalckenhaynC , MaleszkaR . The honey bee epigenomes: differential methylation of brain DNA in queens and workers . PLoS Biol.8 ( 11 ), e1000506 ( 2010 ).
  • Sherwani SI , KhanHA . Role of 5-hydroxymethylcytosine in neurodegeneration . Gene570 ( 1 ), 17 – 24 ( 2015 ).
  • Bernstein AI , LinY , StreetRCet al. 5-Hydroxymethylation-associated epigenetic modifiers of Alzheimer’s disease modulate Tau-induced neurotoxicity . Hum. Mol. Genet.25 ( 12 ), 2437 – 2450 ( 2016 ).
  • Szulwach KE , LiX , LiYet al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging . Nat. Neurosci.14 ( 12 ), 1607 – 1616 ( 2011 ).
  • Wang T , WuH , LiYet al. Subtelomeric hotspots of aberrant 5-hydroxymethylcytosine-mediated epigenetic modifications during reprogramming to pluripotency . Nat. Cell Biol.15 ( 6 ), 700 – 711 ( 2013 ).
  • Munzel M , GlobischD , CarellT . 5-Hydroxymethylcytosine, the sixth base of the genome . Angew. Chem. Int. Ed. Engl.50 ( 29 ), 6460 – 6468 ( 2011 ).
  • van den Hove DL , ChouliarasL , RuttenBP . The role of 5-hydroxymethylcytosine in aging and Alzheimer’s disease: current status and prospects for future studies . Curr. Alzheimer Res.9 ( 5 ), 545 – 549 ( 2012 ).
  • Marques SC , OliveiraCR , PereiraCM , OuteiroTF . Epigenetics in neurodegeneration: a new layer of complexity . Prog. Neuropsychopharmacol. Biol. Psychiatry35 ( 2 ), 348 – 355 ( 2011 ).
  • Xu Z , LiH , JinP . Epigenetics-based therapeutics for neurodegenerative disorders . Curr. Transl. Geriatr. Exp. Gerontol. Rep.1 ( 4 ), 229 – 236 ( 2012 ).
  • Graff J , KimD , DobbinMM , TsaiLH . Epigenetic regulation of gene expression in physiological and pathological brain processes . Physiol. Rev.91 ( 2 ), 603 – 649 ( 2011 ).
  • Lee J , HwangYJ , ShinJYet al. Epigenetic regulation of cholinergic receptor M1 (CHRM1) by histone H3K9me3 impairs Ca(2+) signaling in Huntington’s disease . Acta Neuropathol.125 ( 5 ), 727 – 739 ( 2013 ).
  • Langst G , ManelyteL . Chromatin remodelers: from function to dysfunction . Genes6 ( 2 ), 299 – 324 ( 2015 ).
  • Krol J , LoedigeI , FilipowiczW . The widespread regulation of microRNA biogenesis, function and decay . Nat. Rev. Genet.11 ( 9 ), 597 – 610 ( 2010 ).
  • Suzuki T , NaganoY , MatsuuraAet al. Novel histone deacetylase inhibitors: design, synthesis, enzyme inhibition, and binding mode study of SAHA-based non-hydroxamates . Bioorg. Med. Chem. Lett.13 ( 24 ), 4321 – 4326 ( 2003 ).
  • Cao JX , ZhangHP , DuLX . [Influence of environmental factors on DNA methylation] . Yi Chuan35 ( 7 ), 839 – 846 ( 2013 ).
  • Scott GK , MattieMD , BergerCE , BenzSC , BenzCC . Rapid alteration of microRNA levels by histone deacetylase inhibition . Cancer Res.66 ( 3 ), 1277 – 1281 ( 2006 ).
  • Saito Y , LiangG , EggerGet al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells . Cancer Cell9 ( 6 ), 435 – 443 ( 2006 ).
  • Chen BF , GuS , SuenYK , LiL , ChanWY . microRNA-199a-3p, DNMT3A, and aberrant DNA methylation in testicular cancer . Epigenetics9 ( 1 ), 119 – 128 ( 2014 ).
  • Fabbri M , GarzonR , CimminoAet al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B . Proc. Natl Acad. Sci. USA104 ( 40 ), 15805 – 15810 ( 2007 ).
  • Szulwach KE , LiX , SmrtRDet al. Cross talk between microRNA and epigenetic regulation in adult neurogenesis . J. Cell Biol.189 ( 1 ), 127 – 141 ( 2010 ).
  • Liu C , TengZQ , SantistevanNJet al. Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation . Cell Stem Cell6 ( 5 ), 433 – 444 ( 2010 ).
  • Du J , PatelDJ . Structural biology-based insights into combinatorial readout and crosstalk among epigenetic marks . Biochim. Biophys. Acta1839 ( 8 ), 719 – 727 ( 2014 ).
  • Thomas EA . DNA methylation in Huntington’s disease: implications for transgenerational effects . Neurosci. Lett.625 , 34 – 39 ( 2016 ).
  • Ng CW , YildirimF , YapYSet al. Extensive changes in DNA methylation are associated with expression of mutant huntingtin . Proc. Natl Acad. Sci. USA110 ( 6 ), 2354 – 2359 ( 2013 ).
  • Jia H , MorrisCD , WilliamsRM , LoringJF , ThomasEA . HDAC inhibition imparts beneficial transgenerational effects in Huntington’s disease mice via altered DNA and histone methylation . Proc. Natl Acad. Sci. USA112 ( 1 ), E56 – E64 ( 2015 ).
  • Wang F , YangY , LinXet al. Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington’s disease . Hum. Mol. Genet.22 ( 18 ), 3641 – 3653 ( 2013 ).
  • Villar-Menendez I , BlanchM , TyebjiSet al. Increased 5-methylcytosine and decreased 5-hydroxymethylcytosine levels are associated with reduced striatal A2AR levels in Huntington’s disease . Neuromolecular Med.15 ( 2 ), 295 – 309 ( 2013 ).
  • De Souza RA , IslamSA , McEwenLMet al. DNA methylation profiling in human Huntington’s disease brain . Hum. Mol. Genet.25 ( 10 ), 2013 – 2030 ( 2016 ).
  • Bai G , CheungI , ShulhaHPet al. Epigenetic dysregulation of hairy and enhancer of split 4 (HES4) is associated with striatal degeneration in postmortem Huntington brains . Hum. Mol. Genet.24 ( 5 ), 1441 – 1456 ( 2015 ).
  • Reik W , MaherER , MorrisonPJ , HardingAE , SimpsonSA . Age at onset in Huntington’s disease and methylation at D4S95 . J. Med. Genet.30 ( 3 ), 185 – 188 ( 1993 ).
  • Flanagan JM , PopendikyteV , PozdniakovaiteNet al. Intra- and interindividual epigenetic variation in human germ cells . Am. J. Hum. Genet.79 ( 1 ), 67 – 84 ( 2006 ).
  • Narayanan M , HuynhJL , WangKet al. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases . Mol. Syst. Biol.10 , 743 ( 2014 ).
  • Thomas EA , CoppolaG , DesplatsPAet al. The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice . Proc. Natl Acad. Sci. USA105 ( 40 ), 15564 – 15569 ( 2008 ).
  • Tang B , SeredeninaT , CoppolaGet al. Gene expression profiling of R6/2 transgenic mice with different CAG repeat lengths reveals genes associated with disease onset and progression in Huntington’s disease . Neurobiol. Dis.42 ( 3 ), 459 – 467 ( 2011 ).
  • Schmitt I , EvertBO , KhaznehH , KlockgetherT , WuellnerU . The human MJD gene: genomic structure and functional characterization of the promoter region . Gene314 , 81 – 88 ( 2003 ).
  • Wang C , PengH , LiJet al. Alteration of methylation status in the ATXN3 gene promoter region is linked to the SCA3/MJD . Neurobiol. Aging53 , 192.e5 – 192.e10 ( 2017 ).
  • Dick KJ , NelsonCP , BraundPS , GoodallAH , SamaniNJ . Genome wide methylation analysis in coronary artery disease . Heart97 , A42 – A42 ( 2011 ).
  • Aguiar J , SanturlidisS , NowokJet al. Identification of the physiological promoter for spinocerebellar ataxia 2 gene reveals a CpG island for promoter activity situated into the exon 1 of this gene and provides data about the origin of the nonmethylated state of these types of islands . Biochem. Biophys. Res. Commun.254 ( 2 ), 315 – 318 ( 1999 ).
  • Laffita-Mesa JM , BauerPO , KouriVet al. Epigenetics DNA methylation in the core ataxin-2 gene promoter: novel physiological and pathological implications . Hum. Genet.131 ( 4 ), 625 – 638 ( 2012 ).
  • Dion V , LinY , HubertLJr , WaterlandRA , WilsonJH . Dnmt1 deficiency promotes CAG repeat expansion in the mouse germline . Hum. Mol. Genet.17 ( 9 ), 1306 – 1317 ( 2008 ).
  • Libby RT , HagermanKA , PinedaVVet al. CTCF cis-regulates trinucleotide repeat instability in an epigenetic manner: a novel basis for mutational hot spot determination . PLoS Genet.4 ( 11 ), e1000257 ( 2008 ).
  • Moumne L , BetuingS , CabocheJ . Multiple aspects of gene dysregulation in Huntington’s disease . Front. Neurol.4 , 127 ( 2013 ).
  • Sadri-Vakili G , BouzouB , BennCLet al. Histones associated with downregulated genes are hypo-acetylated in Huntington’s disease models . Hum. Mol. Genet.16 ( 11 ), 1293 – 1306 ( 2007 ).
  • Pena-Altamira LE , PolazziE , MontiB . Histone post-translational modifications in Huntington’s and Parkinson’s diseases . Curr. Pharm. Des.19 ( 28 ), 5085 – 5092 ( 2013 ).
  • Steffan JS , BodaiL , PallosJet al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila . Nature413 ( 6857 ), 739 – 743 ( 2001 ).
  • Steffan JS , KazantsevA , Spasic-BoskovicOet al. The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription . Proc. Natl Acad. Sci. USA97 ( 12 ), 6763 – 6768 ( 2000 ).
  • Ferrante RJ , KubilusJK , LeeJet al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice . J. Neurosci.23 ( 28 ), 9418 – 9427 ( 2003 ).
  • Gardian G , BrowneSE , ChoiDKet al. Neuroprotective effects of phenylbutyrate in the N171–82Q transgenic mouse model of Huntington’s disease . J. Biol. Chem.280 ( 1 ), 556 – 563 ( 2005 ).
  • Yeh HH , YoungD , GelovaniJGet al. Histone deacetylase class II and acetylated core histone immunohistochemistry in human brains with Huntington’s disease . Brain Res.1504 , 16 – 24 ( 2013 ).
  • Dompierre JP , GodinJD , CharrinBCet al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation . J. Neurosci.27 ( 13 ), 3571 – 3583 ( 2007 ).
  • McFarland KN , DasS , SunTTet al. Genome-wide histone acetylation is altered in a transgenic mouse model of Huntington’s disease . PLoS ONE7 ( 7 ), e41423 ( 2012 ).
  • Anderson AN , RoncaroliF , HodgesA , DeprezM , TurkheimerFE . Chromosomal profiles of gene expression in Huntington’s disease . Brain131 ( Pt 2 ), 381 – 388 ( 2008 ).
  • Igarashi S , MoritaH , BennettKMet al. Inducible PC12 cell model of Huntington’s disease shows toxicity and decreased histone acetylation . Neuroreport14 ( 4 ), 565 – 568 ( 2003 ).
  • Chou AH , ChenSY , YehTH , WengYH , WangHL . HDAC inhibitor sodium butyrate reverses transcriptional downregulation and ameliorates ataxic symptoms in a transgenic mouse model of SCA3 . Neurobiol. Dis.41 ( 2 ), 481 – 488 ( 2011 ).
  • Chou AH , ChenYL , HuSH , ChangYM , WangHL . Polyglutamine-expanded ataxin-3 impairs long-term depression in Purkinje neurons of SCA3 transgenic mouse by inhibiting HAT and impairing histone acetylation . Brain Res.1583 , 220 – 229 ( 2014 ).
  • Li SH , LiXJ . Huntingtin-protein interactions and the pathogenesis of Huntington’s disease . Trends Genet.20 ( 3 ), 146 – 154 ( 2004 ).
  • Harjes P , WankerEE . The hunt for huntingtin function: interaction partners tell many different stories . Trends Biochem. Sci.28 ( 8 ), 425 – 433 ( 2003 ).
  • Ryu H , LeeJ , HagertySWet al. ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease . Proc. Natl Acad. Sci. USA103 ( 50 ), 19176 – 19181 ( 2006 ).
  • Ferrante RJ , RyuH , KubilusJKet al. Chemotherapy for the brain: the antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington’s disease . J. Neurosci.24 ( 46 ), 10335 – 10342 ( 2004 ).
  • Kazantsev A , PreisingerE , DranovskyA , GoldgaberD , HousmanD . Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells . Proc. Natl Acad. Sci. USA96 ( 20 ), 11404 – 11409 ( 1999 ).
  • Nucifora FC Jr , SasakiM , PetersMFet al. Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity . Science291 ( 5512 ), 2423 – 2428 ( 2001 ).
  • Stack EC , Del SignoreSJ , Luthi-CarterRet al. Modulation of nucleosome dynamics in Huntington’s disease . Hum. Mol. Genet.16 ( 10 ), 1164 – 1175 ( 2007 ).
  • Taylor JP , TayeAA , CampbellC , Kazemi-EsfarjaniP , FischbeckKH , MinKT . Aberrant histone acetylation, altered transcription, and retinal degeneration in a Drosophila model of polyglutamine disease are rescued by CREB-binding protein . Genes Dev.17 ( 12 ), 1463 – 1468 ( 2003 ).
  • Klevytska AM , TebbenkampAT , SavonenkoAV , BorcheltDR . Partial depletion of CREB-binding protein reduces life expectancy in a mouse model of Huntington disease . J. Neuropathol. Exp. Neurol.69 ( 4 ), 396 – 404 ( 2010 ).
  • Wang H , WangL , Erdjument-BromageHet al. Role of histone H2A ubiquitination in Polycomb silencing . Nature431 ( 7010 ), 873 – 878 ( 2004 ).
  • Kim MO , ChawlaP , OverlandRP , XiaE , Sadri-VakiliG , ChaJH . Altered histone monoubiquitylation mediated by mutant huntingtin induces transcriptional dysregulation . J. Neurosci.28 ( 15 ), 3947 – 3957 ( 2008 ).
  • Bett JS , BennCL , RyuKY , KopitoRR , BatesGP . The polyubiquitin Ubc gene modulates histone H2A monoubiquitylation in the R6/2 mouse model of Huntington’s disease . J. Cell. Mol. Med.13 ( 8B ), 2645 – 2657 ( 2009 ).
  • Gehrking KM , AndresenJM , DuvickL , LoughJ , ZoghbiHY , OrrHT . Partial loss of Tip60 slows mid-stage neurodegeneration in a spinocerebellar ataxia type 1 (SCA1) mouse model . Hum. Mol. Genet.20 ( 11 ), 2204 – 2212 ( 2011 ).
  • Li F , MacfarlanT , PittmanRN , ChakravartiD . Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities . J. Biol. Chem.277 ( 47 ), 45004 – 45012 ( 2002 ).
  • Fiesel FC , SchurrC , WeberSS , KahlePJ . TDP-43 knockdown impairs neurite outgrowth dependent on its target histone deacetylase 6 . Mol. Neurodegener.6 , 64 ( 2011 ).
  • Fiesel FC , VoigtA , WeberSSet al. Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylase 6 . EMBO J.29 ( 1 ), 209 – 221 ( 2010 ).
  • Helmlinger D , HardyS , EberlinA , DevysD , ToraL . Both normal and polyglutamine- expanded ataxin-7 are components of TFTC-type GCN5 histone acetyltransferase-containing complexes . Biochem. Soc. Symp.73 , 155 – 163 ( 2006 ).
  • McCullough SD , GrantPA . Histone acetylation, acetyltransferases, and ataxia–alteration of histone acetylation and chromatin dynamics is implicated in the pathogenesis of polyglutamine-expansion disorders . Adv. Protein Chem. Struct. Biol.79 , 165 – 203 ( 2010 ).
  • Lau P , de StrooperB . Dysregulated microRNAs in neurodegenerative disorders . Semin. Cell Dev. Biol.21 ( 7 ), 768 – 773 ( 2010 ).
  • Karnati HK , PanigrahiMK , GuttiRK , GreigNH , TamargoIA . miRNAs: key players in neurodegenerative disorders and epilepsy . J. Alzheimers Dis.48 ( 3 ), 563 – 580 ( 2015 ).
  • Qiu L , TanEK , ZengL . microRNAs and neurodegenerative diseases . Adv. Exp. Med. Biol.888 , 85 – 105 ( 2015 ).
  • Gupta S , VermaS , MantriS , BermanNE , SandhirR . Targeting microRNAs in prevention and treatment of neurodegenerative disorders . Drug Dev. Res.76 ( 7 ), 397 – 418 ( 2015 ).
  • Cao DD , LiL , ChanWY . MicroRNAs: key regulators in the central nervous system and their implication in neurological diseases . Int. J. Mol. Sci.17 ( 6 ), pii:E842 ( 2016 ).
  • Meza-Sosa KF , Valle-GarciaD , Pedraza-AlvaG , Perez-MartinezL . Role of microRNAs in central nervous system development and pathology . J. Neurosci. Res.90 ( 1 ), 1 – 12 ( 2012 ).
  • Viswambharan V , ThanseemI , VasuMM , PoovathinalSA , AnithaA . miRNAs as biomarkers of neurodegenerative disorders . Biomark. Med.11 ( 2 ), 151 – 167 ( 2017 ).
  • Tan H , XuZ , JinP . Role of noncoding RNAs in trinucleotide repeat neurodegenerative disorders . Exp. Neurol.235 ( 2 ), 469 – 475 ( 2012 ).
  • Bilen J , LiuN , BoniniNM . A new role for microRNA pathways: modulation of degeneration induced by pathogenic human disease proteins . Cell Cycle5 ( 24 ), 2835 – 2838 ( 2006 ).
  • Bilen J , LiuN , BurnettBG , PittmanRN , BoniniNM . MicroRNA pathways modulate polyglutamine-induced neurodegeneration . Mol. Cell24 ( 1 ), 157 – 163 ( 2006 ).
  • Hebert SS , De StrooperB . Alterations of the microRNA network cause neurodegenerative disease . Trends Neurosci.32 ( 4 ), 199 – 206 ( 2009 ).
  • Schaefer A , O’CarrollD , TanCLet al. Cerebellar neurodegeneration in the absence of microRNAs . J. Exp. Med.204 ( 7 ), 1553 – 1558 ( 2007 ).
  • Liu N , LandrehM , CaoKet al. The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila . Nature482 ( 7386 ), 519 – 523 ( 2012 ).
  • Savas JN , MakuskyA , OttosenSet al. Huntington’s disease protein contributes to RNA-mediated gene silencing through association with Argonaute and P bodies . Proc. Natl Acad. Sci. USA105 ( 31 ), 10820 – 10825 ( 2008 ).
  • Buckley NJ , JohnsonR . New insights into non-coding RNA networks in Huntington’s disease . Exp. Neurol.231 ( 2 ), 191 – 194 ( 2011 ).
  • Marti E , PantanoL , Banez-CoronelMet al. A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing . Nucleic Acids Res.38 ( 20 ), 7219 – 7235 ( 2010 ).
  • Kocerha J , XuY , PruchaMS , ZhaoD , ChanAW . microRNA-128a dysregulation in transgenic Huntington’s disease monkeys . Mol. Brain7 , 46 ( 2014 ).
  • Sinha M , GhoseJ , DasE , BhattarcharyyaNP . Altered microRNAs in STHdh(Q111)/Hdh(Q111) cells: miR-146a targets TBP . Biochem. Biophys. Res. Commun.396 ( 3 ), 742 – 747 ( 2010 ).
  • Ghose J , SinhaM , DasE , JanaNR , BhattacharyyaNP . Regulation of miR-146a by RelA/NFkB and p53 in STHdh(Q111)/Hdh(Q111) cells, a cell model of Huntington’s disease . PLoS ONE6 ( 8 ), e23837 ( 2011 ).
  • Packer AN , XingY , HarperSQ , JonesL , DavidsonBL . The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease . J. Neurosci.28 ( 53 ), 14341 – 14346 ( 2008 ).
  • Kunkanjanawan T , CarterRL , PruchaMS , YangJ , ParnpaiR , ChanAW . miR-196a ameliorates cytotoxicity and cellular phenotype in transgenic Huntington’s disease monkey neural cells . PLoS ONE11 ( 9 ), e0162788 ( 2016 ).
  • Hoss AG , KarthaVK , DongXet al. MicroRNAs located in the Hox gene clusters are implicated in Huntington’s disease pathogenesis . PLoS Genet.10 ( 2 ), e1004188 ( 2014 ).
  • Jin J , ChengY , ZhangYet al. Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin . J. Neurochem.123 ( 4 ), 477 – 490 ( 2012 ).
  • Johnson R , BuckleyNJ . Gene dysregulation in Huntington’s disease: REST, microRNAs and beyond . Neuromolecular Med.11 ( 3 ), 183 – 199 ( 2009 ).
  • Johnson R , ZuccatoC , BelyaevND , GuestDJ , CattaneoE , BuckleyNJ . A microRNA-based gene dysregulation pathway in Huntington’s disease . Neurobiol. Dis.29 ( 3 ), 438 – 445 ( 2008 ).
  • Lee ST , ChuK , ImWSet al. Altered microRNA regulation in Huntington’s disease models . Exp. Neurol.227 ( 1 ), 172 – 179 ( 2011 ).
  • Zuccato C , TartariM , CrottiAet al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes . Nat. Genet.35 ( 1 ), 76 – 83 ( 2003 ).
  • Buckley NJ , JohnsonR , ZuccatoC , BithellA , CattaneoE . The role of REST in transcriptional and epigenetic dysregulation in Huntington’s disease . Neurobiol. Dis.39 ( 1 ), 28 – 39 ( 2010 ).
  • Ooi L , WoodIC . Chromatin crosstalk in development and disease: lessons from REST . Nat. Rev. Genet.8 ( 7 ), 544 – 554 ( 2007 ).
  • Gascon E , GaoFB . Cause or effect: misregulation of microRNA pathways in neurodegeneration . Front. Neurosci.6 , 48 ( 2012 ).
  • Koscianska E , KrzyzosiakWJ . Current understanding of the role of microRNAs in spinocerebellar ataxias . Cerebellum Ataxias1 , 7 ( 2014 ).
  • McCann C , HolohanEE , DasSet al. The Ataxin-2 protein is required for microRNA function and synapse-specific long-term olfactory habituation . Proc. Natl Acad. Sci. USA108 ( 36 ), E655 – E662 ( 2011 ).
  • Carmona V , Cunha-SantosJ , OnofreIet al. Unravelling endogenous microRNA system dysfunction as a new pathophysiological mechanism in Machado–Joseph disease . Mol. Ther.25 ( 4 ), 1038 – 1055 ( 2017 ).
  • Roshan R , GhoshT , GadgilM , PillaiB . Regulation of BACE1 by miR-29a/b in a cellular model of spinocerebellar ataxia 17 . RNA Biol.9 ( 6 ), 891 – 899 ( 2012 ).
  • Persengiev S , KondovaI , OttingN , KoeppenAH , BontropRE . Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebellar ataxia pathogenesis . Neurobiol. Aging32 ( 12 ), 2316.e17 – 2316.e27 ( 2011 ).
  • Rodriguez-Lebron E , LiuG , KeiserM , BehlkeMA , DavidsonBL . Altered purkinje cell miRNA expression and SCA1 pathogenesis . Neurobiol. Dis.54 , 456 – 463 ( 2013 ).
  • Lee Y , SamacoRC , GatchelJR , ThallerC , OrrHT , ZoghbiHY . miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis . Nat. Neurosci.11 ( 10 ), 1137 – 1139 ( 2008 ).
  • Lukiw WJ . Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus . Neuroreport18 ( 3 ), 297 – 300 ( 2007 ).
  • Sethi P , LukiwWJ . Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex . Neurosci. Lett.459 ( 2 ), 100 – 104 ( 2009 ).
  • Hebert SS , HorreK , NicolaiLet al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression . Proc. Natl Acad. Sci. USA105 ( 17 ), 6415 – 6420 ( 2008 ).
  • Wang X , LiuP , ZhuHet al. miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation . Brain Res. Bull.80 ( 4–5 ), 268 – 273 ( 2009 ).
  • Yan R , VassarR . Targeting the beta secretase BACE1 for Alzheimer’s disease therapy . Lancet Neurol.13 ( 3 ), 319 – 329 ( 2014 ).
  • Shi YT , HuangFZ , TangBSet al. MicroRNA profiling in the serums of SCA3/MJD patients . Int. J. Neurosci.124 ( 2 ), 97 – 101 ( 2014 ).
  • Hoss AG , LagomarsinoVN , FrankS , HadziTC , MyersRH , LatourelleJC . Study of plasma-derived miRNAs mimic differences in Huntington’s disease brain . Mov. Disord.30 ( 14 ), 1961 – 1964 ( 2015 ).
  • Gaughwin PM , CieslaM , LahiriN , TabriziSJ , BrundinP , BjorkqvistM . Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease . Hum. Mol. Genet.20 ( 11 ), 2225 – 2237 ( 2011 ).
  • Hoss AG , LabadorfA , LatourelleJCet al. miR-10b-5p expression in Huntington’s disease brain relates to age of onset and the extent of striatal involvement . BMC Med. Genomics8 , 10 ( 2015 ).
  • Diez-Planelles C , Sanchez-LozanoP , CrespoMCet al. Circulating microRNAs in Huntington’s disease: emerging mediators in metabolic impairment . Pharmacol. Res.108 , 102 – 110 ( 2016 ).
  • Seto AG . The road toward microRNA therapeutics . Int. J. Biochem. Cell Biol.42 ( 8 ), 1298 – 1305 ( 2010 ).
  • Ebert MS , NeilsonJR , SharpPA . MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells . Nat. Methods4 ( 9 ), 721 – 726 ( 2007 ).
  • Sapru MK , YatesJW , HoganS , JiangL , HalterJ , BohnMC . Silencing of human alpha-synuclein in vitro and in rat brain using lentiviral-mediated RNAi . Exp. Neurol.198 ( 2 ), 382 – 390 ( 2006 ).
  • Hu J , LiuJ , CoreyDR . Allele-selective inhibition of huntingtin expression by switching to an miRNA-like RNAi mechanism . Chem. Biol.17 ( 11 ), 1183 – 1188 ( 2010 ).
  • Fiszer A , MykowskaA , KrzyzosiakWJ . Inhibition of mutant huntingtin expression by RNA duplex targeting expanded CAG repeats . Nucleic Acids Res.39 ( 13 ), 5578 – 5585 ( 2011 ).
  • Boudreau RL , McBrideJL , MartinsIet al. Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice . Mol. Ther.17 ( 6 ), 1053 – 1063 ( 2009 ).
  • McBride JL , BoudreauRL , HarperSQet al. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi . Proc. Natl Acad. Sci. USA105 ( 15 ), 5868 – 5873 ( 2008 ).
  • Cheng PH , LiCL , ChangYFet al. miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models . Am. J. Hum. Genet.93 ( 2 ), 306 – 312 ( 2013 ).
  • Keiser MS , GeogheganJC , BoudreauRL , LennoxKA , DavidsonBL . RNAi or overexpression: alternative therapies for spinocerebellar ataxia type 1 . Neurobiol. Dis.56 , 6 – 13 ( 2013 ).
  • Keiser MS , BoudreauRL , DavidsonBL . Broad therapeutic benefit after RNAi expression vector delivery to deep cerebellar nuclei: implications for spinocerebellar ataxia type 1 therapy . Mol. Ther.22 ( 3 ), 588 – 595 ( 2014 ).
  • Rodriguez-Lebron E , CostaMD , Luna-CancalonKet al. Silencing mutant ATXN3 expression resolves molecular phenotypes in SCA3 transgenic mice . Mol. Ther.21 ( 10 ), 1909 – 1918 ( 2013 ).
  • Costa Mdo C , Luna-CancalonK , FischerSet al. Toward RNAi therapy for the polyglutamine disease Machado–Joseph disease . Mol. Ther.21 ( 10 ), 1898 – 1908 ( 2013 ).
  • Yao B , JinP . Unlocking epigenetic codes in neurogenesis . Genes Dev.28 ( 12 ), 1253 – 1271 ( 2014 ).
  • Sinha M , GhoseJ , BhattarcharyyaNPet al. Micro RNA -214,-150,-146a and-125b target Huntingtin gene . RNA Biol.8 ( 6 ), 1005 – 1021 ( 2011 ).
  • Das E , JanaNR , BhattacharyyaNP . Delayed cell cycle progression in STHdh(Q111)/Hdh(Q111) cells, a cell model for Huntington’s disease mediated by microRNA-19a, microRNA-146a and microRNA-432 . MicroRNA4 ( 2 ), 86 – 100 ( 2015 ).
  • Huang F , ZhangL , LongZet al. miR-25 alleviates polyQ-mediated cytotoxicity by silencing ATXN3 . FEBS Lett.588 ( 24 ), 4791 – 4798 ( 2014 ).
  • Reinhardt A , FeuilletteS , CassarMet al. Lack of miRNA misregulation at earlyp athological stages in Drosophila neurodegenerative disease models . Front. Genet.3 , 226 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.