222
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Epigenome-Wide Analysis Reveals Specific DNA Hypermethylation of T Cells During Human Hematopoietic Differentiation

, , , , , , , , , , & show all
Pages 903-923 | Received 12 Dec 2017, Accepted 16 Mar 2018, Published online: 05 Apr 2018

References

  • Smith ZD , MeissnerA . DNA methylation: roles in mammalian development . Nat. Rev. Genet.14 ( 3 ), 204 – 220 ( 2013 ).
  • Wu TP , WangT , SeetinMGet al. DNA methylation on N6-adenine in mammalian embryonic stem cells . Nature532 ( 7599 ), 329 – 333 ( 2016 ).
  • Hirabayashi Y , GotohY . Epigenetic control of neural precursor cell fate during development . Nat. Rev. Neurosci.11 ( 6 ), 377 – 388 ( 2010 ).
  • Hattori N , NishinoK , KoYet al. Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells . J. Biol. Chem.279 ( 17 ), 17063 – 17069 ( 2004 ).
  • Feinberg AP , CuiH , OhlssonR . DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms . Semin. Cancer Biol.12 ( 5 ), 389 – 398 ( 2002 ).
  • Payer B , LeeJT . X chromosome dosage compensation: how mammals keep the balance . Annu. Rev. Genet.42 , 733 – 772 ( 2008 ).
  • Orend G , KuhlmannI , DoerflerW . Spreading of DNA methylation across integrated foreign (adenovirus type 12) genomes in mammalian cells . J. Virol.65 ( 8 ), 4301 – 4308 ( 1991 ).
  • Ballestar E . Epigenetic alterations in autoimmune rheumatic diseases . Nat. Rev. Rheumatol.7 ( 5 ), 263 – 271 ( 2011 ).
  • Urdinguio RG , Sanchez-MutJV , EstellerM . Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies . Lancet Neurol.8 ( 11 ), 1056 – 1072 ( 2009 ).
  • Urdinguio RG , BayónGF , DmitrijevaMet al. Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility . Hum. Reprod. Oxf. Engl.30 ( 5 ), 1014 – 1028 ( 2015 ).
  • Ehrlich M . DNA methylation in cancer: too much, but also too little . Oncogene21 ( 35 ), 5400 – 5413 ( 2002 ).
  • Fernandez AF , AssenovY , Martin-SuberoJIet al. A DNA methylation fingerprint of 1628 human samples . Genome Res.22 ( 2 ), 407 – 419 ( 2012 ).
  • Heyn H , EstellerM . DNA methylation profiling in the clinic: applications and challenges . Nat. Rev. Genet.13 ( 10 ), 679 – 692 ( 2012 ).
  • Moran S , Martínez-CardúsA , SayolsSet al. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis . Lancet Oncol.17 ( 10 ), 1386 – 1395 ( 2016 ).
  • ENCODE Project Consortium . An integrated encyclopedia of DNA elements in the human genome . Nature489 ( 7414 ), 57 – 74 ( 2012 ).
  • Bernstein BE , StamatoyannopoulosJA , CostelloJFet al. The NIH Roadmap Epigenomics Mapping Consortium . Nat. Biotechnol.28 ( 10 ), 1045 – 1048 ( 2010 ).
  • Chadwick LH . The NIH Roadmap Epigenomics Program data resource . Epigenomics4 ( 3 ), 317 – 324 ( 2012 ).
  • Adams D , AltucciL , AntonarakisSEet al. BLUEPRINT to decode the epigenetic signature written in blood . Nat. Biotechnol.30 ( 3 ), 224 – 226 ( 2012 ).
  • Bock C , BeermanI , LienW-Het al. DNA methylation dynamics during in vivo differentiation of blood and skin stem cells . Mol. Cell.47 ( 4 ), 633 – 647 ( 2012 ).
  • Ehrlich M , LaceyM . DNA methylation and differentiation: silencing, upregulation and modulation of gene expression . Epigenomics5 ( 5 ), 553 – 568 ( 2013 ).
  • Farlik M , HalbritterF , MüllerFet al. DNA methylation dynamics of human hematopoietic stem cell differentiation . Cell Stem Cell19 ( 6 ), 808 – 822 ( 2016 ).
  • Bell RE , GolanT , SheinboimDet al. Enhancer methylation dynamics contribute to cancer plasticity and patient mortality . Genome Res.26 ( 5 ), 601 – 611 ( 2016 ).
  • Heyn H , VidalE , FerreiraHJet al. Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer . Genome Biol.17 , 11 ( 2016 ).
  • Bae MG , KimJY , ChoiJK . Frequent hypermethylation of orphan CpG islands with enhancer activity in cancer . BMC Med. Genomics9 ( Suppl. 1 ), 38 ( 2016 ).
  • Hu D , ShilatifardA . Epigenetics of hematopoiesis and hematological malignancies . Genes Dev.30 ( 18 ), 2021 – 2041 ( 2016 ).
  • Ji H , EhrlichLIR , SeitaJet al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors . Nature467 ( 7313 ), 338 – 342 ( 2010 ).
  • Bocker MT , HellwigI , BreilingA , EcksteinV , HoAD , LykoF . Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging . Blood117 ( 19 ), e182 – e189 ( 2011 ).
  • Shearstone JR , PopR , BockC , BoyleP , MeissnerA , SocolovskyM . Global DNA demethylation during mouse erythropoiesis in vivo . Science334 ( 6057 ), 799 – 802 ( 2011 ).
  • Calvanese V , FernándezAF , UrdinguioRGet al. A promoter DNA demethylation landscape of human hematopoietic differentiation . Nucleic Acids Res.40 ( 1 ), 116 – 131 ( 2012 ).
  • Hogart A , LichtenbergJ , AjaySSet al. Genome-wide DNA methylation profiles in hematopoietic stem and progenitor cells reveal overrepresentation of ETS transcription factor binding sites . Genome Res.22 ( 8 ), 1407 – 1418 ( 2012 ).
  • Bibikova M , BarnesB , TsanCet al. High density DNA methylation array with single CpG site resolution . Genomics98 ( 4 ), 288 – 295 ( 2011 ).
  • Pidsley R , ZotenkoE , PetersTJet al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling . Genome Biol.17 ( 1 ), 208 ( 2016 ).
  • Moran S , ArribasC , EstellerM . Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences . Epigenomics8 ( 3 ), 389 – 399 ( 2016 ).
  • Cortes JL , SanchezL , LigeroGet al. Mesenchymal stem cells facilitate the derivation of human embryonic stem cells from cryopreserved poor-quality embryos . Hum. Reprod. Oxf. Engl.24 ( 8 ), 1844 – 1851 ( 2009 ).
  • Bueno C , MontesR , MelenGJet al. A human ESC model for MLL-AF4 leukemic fusion gene reveals an impaired early hematopoietic-endothelial specification . Cell Res.22 ( 6 ), 986 – 1002 ( 2012 ).
  • Navarro-Montero O , AyllonV , LamoldaMet al. RUNX1c regulates hematopoietic differentiation of human pluripotent stem cells possibly in cooperation with proinflammatory signaling . Stem Cells Dayt. Ohio35 ( 11 ), 2253 – 2266 ( 2017 ).
  • Martínez JG , Pérez-EscuredoJ , Castro-SantosPet al. Hypomethylation of LINE-1, and not centromeric SAT-α, is associated with centromeric instability in head and neck squamous cell carcinoma . Cell. Oncol. Dordr.35 ( 4 ), 259 – 267 ( 2012 ).
  • Liu G-H , BarkhoBZ , RuizSet al. Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome . Nature472 ( 7342 ), 221 – 225 ( 2011 ).
  • Kim JJ , KhalidO , NamaziAet al. Discovery of consensus gene signature and intermodular connectivity defining self-renewal of human embryonic stem cells . Stem Cells Dayt. Ohio32 ( 6 ), 1468 – 1479 ( 2014 ).
  • Pang WW , PriceEA , SahooDet al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age . Proc. Natl Acad. Sci. USA108 ( 50 ), 20012 – 20017 ( 2011 ).
  • Ritchie ME , PhipsonB , WuDet al. limma powers differential expression analyses for RNA-sequencing and microarray studies . Nucleic Acids Res.43 ( 7 ), e47 ( 2015 ).
  • Chen L , GeB , CasaleFPet al. Genetic drivers of epigenetic and transcriptional variation in human immune cells . Cell167 ( 5 ), 1398.e24 – 1414.e24 ( 2016 ).
  • Yu G , WangL-G , HanY , HeQ-Y . clusterProfiler: an R package for comparing biological themes among gene clusters . Omics J. Integr. Biol.16 ( 5 ), 284 – 287 ( 2012 ).
  • Sheffield NC , BockC . LOLA: enrichment analysis for genomic region sets and regulatory elements in R and Bioconductor . Bioinforma. Oxf. Engl.32 ( 4 ), 587 – 589 ( 2016 ).
  • Roadmap Epigenomics Consortium , KundajeA , MeulemanWet al.Integrative analysis of 111 reference human epigenomes . Nature518 ( 7539 ), 317 – 330 ( 2015 ).
  • Andersson R , GebhardC , Miguel-EscaladaIet al. An atlas of active enhancers across human cell types and tissues . Nature507 ( 7493 ), 455 – 461 ( 2014 ).
  • Lawrence M , HuberW , PagèsHet al. Software for computing and annotating genomic ranges . PLoS Comput. Biol.9 ( 8 ), e1003118 ( 2013 ).
  • Gao T , HeB , LiuS , ZhuH , TanK , QianJ . EnhancerAtlas: a resource for enhancer annotation and analysis in 105 human cell/tissue types . Bioinforma Oxf. Engl.32 ( 23 ), 3543 – 3551 ( 2016 ).
  • Heinz S , BennerC , SpannNet al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities . Mol. Cell.38 ( 4 ), 576 – 589 ( 2010 ).
  • Jung N , DaiB , GentlesAJ , MajetiR , FeinbergAP . An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis . Nat. Commun.6 , 8489 ( 2015 ).
  • Cancer Genome Atlas Research Network , LeyTJ , MillerCet al.Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia . N. Engl. J. Med.368 ( 22 ), 2059 – 2074 ( 2013 ).
  • Series GSE88824 . www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE88824 .
  • Nordlund J , BäcklinCL , WahlbergPet al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia . Genome Biol.14 ( 9 ), r105 ( 2013 ).
  • Xu Z , NiuL , LiL , TaylorJA . ENmix: a novel background correction method for Illumina HumanMethylation450 BeadChip . Nucleic Acids Res.44 ( 3 ), e20 ( 2016 ).
  • Du P , KibbeWA , LinSM . lumi: a pipeline for processing Illumina microarray . Bioinforma. Oxf. Engl.24 ( 13 ), 1547 – 1548 ( 2008 ).
  • Leek JT , StoreyJD . Capturing heterogeneity in gene expression studies by surrogate variable analysis . PLoS Genet.3 ( 9 ), 1724 – 1735 ( 2007 ).
  • Weisenberger DJ , CampanM , LongTIet al. Analysis of repetitive element DNA methylation by MethyLight . Nucleic Acids Res.33 ( 21 ), 6823 – 6836 ( 2005 ).
  • Yang AS , EstécioMRH , DoshiK , KondoY , TajaraEH , IssaJ-PJ . A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements . Nucleic Acids Res.32 ( 3 ), e38 ( 2004 ).
  • Gereige L-M , MikkolaHKA . DNA methylation is a guardian of stem cell self-renewal and multipotency . Nat. Genet.41 ( 11 ), 1164 – 1166 ( 2009 ).
  • Lim WF , Inoue-YokooT , TanKS , LaiMI , SugiyamaD . Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells . Stem Cell Res. Ther.4 ( 3 ), 71 ( 2013 ).
  • Pereira C-F , LemischkaIR , MooreK . “From blood to blood”: de-differentiation of hematopoietic progenitors to stem cells . EMBO J.33 ( 14 ), 1511 – 1513 ( 2014 ).
  • Feil R , FragaMF . Epigenetics and the environment: emerging patterns and implications . Nat. Rev. Genet.13 ( 2 ), 97 – 109 ( 2012 ).
  • Jones MJ , GoodmanSJ , KoborMS . DNA methylation and healthy human aging . Aging Cell14 ( 6 ), 924 – 932 ( 2015 ).
  • González AJ , SettyM , LeslieCS . Early enhancer establishment and regulatory locus complexity shape transcriptional programs in hematopoietic differentiation . Nat. Genet.47 ( 11 ), 1249 – 1259 ( 2015 ).
  • Cico A , Andrieu-SolerC , SolerE . Enhancers and their dynamics during hematopoietic differentiation and emerging strategies for therapeutic action . FEBS Lett.590 ( 22 ), 4084 – 4104 ( 2016 ).
  • Goode DK , ObierN , VijayabaskarMSet al. Dynamic gene regulatory networks drive hematopoietic specification and differentiation . Dev. Cell36 ( 5 ), 572 – 587 ( 2016 ).
  • Kulis M , MerkelA , HeathSet al. Whole-genome fingerprint of the DNA methylome during human B cell differentiation . Nat. Genet.47 ( 7 ), 746 – 756 ( 2015 ).
  • Kulis M , HeathS , BibikovaMet al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia . Nat. Genet.44 ( 11 ), 1236 – 1242 ( 2012 ).
  • Agirre X , CastellanoG , PascualMet al. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers . Genome Res.25 ( 4 ), 478 – 487 ( 2015 ).
  • Queirós AC , BeekmanR , Vilarrasa-BlasiRet al. Decoding the DNA Methylome of mantle cell lymphoma in the light of the entire B cell lineage . Cancer Cell30 ( 5 ), 806 – 821 ( 2016 ).
  • Jones PA , BaylinSB . The epigenomics of cancer . Cell128 ( 4 ), 683 – 692 ( 2007 ).
  • Viré E , BrennerC , DeplusRet al. The polycomb group protein EZH2 directly controls DNA methylation . Nature439 ( 7078 ), 871 – 874 ( 2006 ).
  • Sanda T , LawtonLN , BarrasaMIet al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia . Cancer Cell22 ( 2 ), 209 – 221 ( 2012 ).
  • Belver L , FerrandoA . The genetics and mechanisms of T cell acute lymphoblastic leukaemia . Nat. Rev. Cancer16 ( 8 ), 494 – 507 ( 2016 ).
  • Tsai FY , KellerG , KuoFCet al. An early haematopoietic defect in mice lacking the transcription factor GATA-2 . Nature371 ( 6494 ), 221 – 226 ( 1994 ).
  • Vicente C , ConchilloA , García-SánchezMA , OderoMD . The role of the GATA2 transcription factor in normal and malignant hematopoiesis . Crit. Rev. Oncol. Hematol.82 ( 1 ), 1 – 17 ( 2012 ).
  • Chou ST , KhandrosE , BaileyLCet al. Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate . Blood114 ( 5 ), 983 – 994 ( 2009 ).
  • Scott EW , SimonMC , AnastasiJ , SinghH . Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages . Science265 ( 5178 ), 1573 – 1577 ( 1994 ).
  • Iwasaki H , SomozaC , ShigematsuHet al. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation . Blood106 ( 5 ), 1590 – 1600 ( 2005 ).
  • Champhekar A , DamleSS , FreedmanG , CarottaS , NuttSL , RothenbergEV . Regulation of early T-lineage gene expression and developmental progression by the progenitor cell transcription factor PU.1 . Genes Dev.29 ( 8 ), 832 – 848 ( 2015 ).
  • Seki M , KimuraS , IsobeTet al. Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia . Nat. Genet.49 ( 8 ), 1274 – 1281 ( 2017 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.