542
Views
0
CrossRef citations to date
0
Altmetric
Research Article

α-Synuclein Accumulation in SH-SY5Y Cell Impairs Autophagy in Microglia by Exosomes Overloading MiR-19a-3p

, , , , , , & show all
Pages 1661-1677 | Received 10 Aug 2019, Accepted 11 Oct 2019, Published online: 24 Oct 2019

References

  • Bengoa-Vergniory N , RobertsRF , Wade-MartinsRet al. Alpha-synuclein oligomers: a new hope. Acta Neuropathol.134(6), 819–838 (2017).
  • Brundin P , DaveKD , KordowerJHet al. Therapeutic approaches to target alpha-synuclein pathology. Exp. Neurol.298(Pt B), 225–235 (2017).
  • Spillantini MG . Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy are alpha-synucleinopathies. Parkinsonism Relat. Disord.5(4), 157–162 (1999).
  • Federico Zambon , MartaCherubini , HugoJR Fernandeset al. Cellular α-synuclein pathology is associated with bioenergetic dysfunction in Parkinson’s iPSC-derived dopamine neurons. Hum. Mol. Genet.28(12), 2001–2013 (2019).
  • Giraldez-Perez RM , Antolin-VallespinM , MunozMDet al. Models of alpha-synuclein aggregation in Parkinson’s disease. Acta Neuropathol. Commun.2, 176 (2014).
  • Mao X , OuMT , KaruppagounderSSet al. Pathological alpha-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science353(6307), pii:aah3374 (2016).
  • Urrea L , FerrerI , GavínRet al. The cellular prion protein (PrP(C)) as neuronal receptor for alpha-synuclein. Prion.11(4), 226–233 (2017).
  • Freeze B , AcostaD , PandyaSet al. Regional expression of genes mediating trans-synaptic alpha-synuclein transfer predicts regional atrophy in Parkinson disease. Neuroimage Clin.18, 456–466 (2018).
  • Emmanouilidou E , MelachroinouK , RoumeliotisTet al. Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci.30(20), 6838–6851 (2010).
  • Shi M , LiuC , CookTJet al. Plasma exosomal alpha-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol.128(5), 639–650 (2014).
  • Grozdanov V , DanzerKM. Release and uptake of pathologic alpha-synuclein. Cell Tissue Res.373(1), 175–182 (2018).
  • Leggio L , VivarelliS , L’EpiscopoFet al. microRNAs in Parkinson’s disease: from pathogenesis to novel diagnostic and therapeutic approaches. Int. J. Mol. Sci.18(2), pii:E2698 (2017).
  • Yang TT , LiuCG , GaoSCet al. The serum exosome derived microRNA-135a, -193b, and -384 were potential Alzheimer’s disease biomarkers. Biomed. Environ. Sci.31(2), 87–96 (2018).
  • Schneider A , SimonsM. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res.352(1), 33–47 (2013).
  • Lim YJ , LeeSJ. Are exosomes the vehicle for protein aggregate propagation in neurodegenerative diseases?Acta Neuropathol. Commun.5(1), 64 (2017).
  • Tofaris GK . A critical assessment of exosomes in the pathogenesis and stratification of Parkinson’s disease. J. Parkinsons Dis.7(4), 569–576 (2017).
  • Chang YH , WuKC , HarnHJet al. Exosomes and stem cells in degenerative disease diagnosis and therapy. Cell Transplant.27(3), 349–363 (2018).
  • Schapansky J , NardozziJD , LaVoieMJ. The complex relationships between microglia, alpha-synuclein, and LRRK2 in Parkinson’s disease. Neuroscience302, 74–88 (2015).
  • Haenseler W , ZambonF , LeeHet al. Excess α-synuclein compromises phagocytosis in iPSC-derived macrophages. Sci. Rep.7(1), 9003 (2017).
  • Subhramanyam CS , WangC , HuQet al. Microglia-mediated neuroinflammation in neurodegenerative diseases.. Semin. Cell Dev. Biol.94, 112–120 (2019).
  • Sanchez-Guajardo V , TentillierN , Romero-RamosM. The relation between alpha-synuclein and microglia in Parkinson’s disease: recent developments. Neuroscience302, 47–58 (2015).
  • Bliederhaeuser C , GrozdanovV , SpeidelAet al. Age-dependent defects of alpha-synuclein oligomer uptake in microglia and monocytes. Acta Neuropathol.131(3), 379–391 (2016).
  • Tang Y , LeW. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol.53(2), 1181–1194 (2016).
  • Saitoh T , FujitaN , JangMHet al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature456(7219), 264–268 (2008).
  • McMillan KJ , MurrayTK , Bengoa-VergnioryNet al. Loss of microRNA-7 regulation leads to α-synuclein accumulation and dopaminergic neuronal loss in vivo. Mol. Ther.25(10), 2404–2414 (2017).
  • Arshad AR , SulaimanSA , SaperiAAet al. microRNAs and target genes as biomarkers for the diagnosis of early onset of parkinson disease. Front. Mol. Neurosci.10, 352 (2017).
  • Tagliafierro L , GlennOC , ZamoraMEet al. Genetic analysis of alpha-synuclein 3′ untranslated region and its corresponding microRNAs in relation to Parkinson’s disease compared to dementia with Lewy bodies. Alzheimers Dement.13(11), 1237–1250 (2017).
  • Li C , YangL , WuHet al. Paeonol inhibits oxidized low-density lipoprotein-induced vascular endothelial cells autophagy by upregulating the expression of miRNA-30a. Front. Pharmacol.9, 95 (2018).
  • Lu Y , GaoJ , ZhangSet al. miR-142-3p regulates autophagy by targeting ATG16L1 in thymic-derived regulatory T cell (tTreg). Cell Death Dis.9(3), 290 (2018).
  • Zhang K , ChenJ , ZhouHet al. PU.1/microRNA-142-3p targets ATG5/ATG16L1 to inactivate autophagy and sensitize hepatocellular carcinoma cells to sorafenib. Cell Death Dis.9(3), 312 (2018).
  • Haddad D , NakamuraK. PINK1-based screen shines light on autophagy enhancers for Parkinson’s disease. Cell Chem. Biol.24(4), 429–430 (2017).
  • Karabiyik C , LeeMJ , RubinszteinDCet al. Autophagy impairment in Parkinson’s disease. Essays Biochem.61(6), 711–720 (2017).
  • Sato S , UchiharaT , FukudaTet al. Loss of autophagy in dopaminergic neurons causes Lewy pathology and motor dysfunction in aged mice. Sci. Rep.8(1), 2813 (2018).
  • Brites D , FernandesA. Neuroinflammation and depression: microglia activation, extracellular microvesicles and microrna dysregulation. Front. Cell. Neurosci.9, 476 (2015).
  • Mendell JT . miRiad roles for the miR-17-92 cluster in development and disease. Cell133(2), 217–222 (2008).
  • Liu K , HaoQ , WeiJet al. MicroRNA-19a/b-3p protect the heart from hypertension-induced pathological cardiac hypertrophy through PDE5A. J. Hypertens.36(9), 1847–1857 (2018).
  • Chatterjee P , RoyD , BhattacharyyaMet al. Biological networks in Parkinson’s disease: an insight into the epigenetic mechanisms associated with this disease. BMC Genomics18(1), 721 (2017).
  • Su L , WangC , ZhengCet al. A meta-analysis of public microarray data identifies biological regulatory networks in Parkinson’s disease. BMC Med. Genomics11(1), 40 (2018).
  • Tan C , LiuX , ChenJ. Microarray analysis of the molecular mechanism involved in Parkinson’s disease. Parkinsons Dis.2018, 1590465 (2018).
  • Zou M , WangF , GaoRet al. Autophagy inhibition of hsa-miR-19a-3p/19b-3p by targeting TGF-beta R II during TGF-beta1-induced fibrogenesis in human cardiac fibroblasts. Sci. Rep.6, 24747 (2016).
  • Cho MH , ChoK , KangHJet al. Autophagy in microglia degrades extracellular beta-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy10(10), 1761–1775 (2014).
  • Su P , ZhangJ , WangDet al. The role of autophagy in modulation of neuroinflammation in microglia. Neuroscience319, 155–167 (2016).
  • Plaza-Zabala A , Sierra-TorreV , SierraA. Autophagy and microglia: novel partners in neurodegeneration and aging. Int. J. Mol. Sci.18(3), pii: E598 (2017).
  • Dou L , MengX , SuiXet al. MiR-19a regulates PTEN expression to mediate glycogen synthesis in hepatocytes. Sci. Rep.5, 11602 (2015).
  • Sun G , LuY , LiYet al. miR-19a protects cardiomyocytes from hypoxia/ reoxygenation-induced apoptosis via PTEN/PI3K/p-Akt pathway. Biosci. Rep.37(6), pii:BSR20170899 (2017).
  • Gao S , ZhaoZ , WuRet al. miR-146b inhibits autophagy in prostate cancer by targeting the PTEN/Akt/mTOR signaling pathway. Aging (Albany NY)10(8), 2113–2121 (2018).
  • Li W , JiangY , WangYet al. miR-181b regulates autophagy in a model of Parkinson’s disease by targeting the PTEN/Akt/mTOR signaling pathway. Neurosci. Lett.675, 83–88 (2018).
  • Wang WJ , YangW , OuyangZHet al. MiR-21 promotes ECM degradation through inhibiting autophagy via the PTEN/akt/mTOR signaling pathway in human degenerated NP cells. Biomed. Pharmacother.99, 725–734 (2018).
  • Wang MX , ChengXY , JinMet al. TNF compromises lysosome acidification and reduces alpha-synuclein degradation via autophagy in dopaminergic cells. Exp. Neurol.271, 112–121 (2015).
  • Xilouri M , BrekkOR , StefanisLet al. Autophagy and alpha-synuclein: relevance to Parkinson’s disease and related synucleopathies. Mov. Disord.31(2), 178–192 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.