404
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Biomarkers for Human Sepsis and Septic Shock: Insights from Immunosuppression

, , , , , , , , & ORCID Icon show all
Pages 617-646 | Received 02 Nov 2019, Accepted 25 Feb 2020, Published online: 12 May 2020

References

  • Singer M , DeutschmanCS , SeymourCWet al. The Third International consensus definitions for sepsis and septic shock. JAMA315(8), 801–810 (2016).
  • Angus DC , PollTV. Severe sepsis and septic shock. Crit. Care Med.3(69), 840–851 (2013).
  • Vincent J-L , LefrantJ-Y , KotfisKet al. Comparison of European ICU patients in 2012 (ICON) versus 2002 (SOAP). Intensive Care Med.44(3), 337–344 (2018).
  • Tacconelli E , CataldoMA , DancerSJet al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin. Microbiol. Infect.20(1), 1–55 (2014).
  • Seymour CW , LiuVX , IwashynaTJet al. Assessment of clinical criteria for sepsis for the third international consensus definitions for sepsis and septic shock (sepsis-3). J. Am. Med. Assoc.315(8), 762–774 (2016).
  • Inada-Kim M , NsutebuE. NEWS 2: an opportunity to standardise the management of deterioration and sepsis. BMJ1(360), 1260–1265 (2018).
  • Rhodes A , EvansLE , AlhazzaniWet al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med.43(3), 304–377 (2017).
  • Nutbeam T , DanielsR. Sepsis Trust. Screening and Action Tools.UK Sepsis Trust, Bennets Hill, Birmingham, UK (2019).
  • Vincent J-L , MorenoR , TakalaJet al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med.22(7), 707–710 (1996).
  • Reinhart K , DanielsR , KissoonN , MachadoFR , SchachterRD , FinferS. Recognizing sepsis as a global health priority – a WHO resolution. N. Engl. J. Med.377(5), 414–417 (2017).
  • Levy MM , EvansLE , RhodesA. The Surviving Sepsis Campaign Bundle: 2018 update. Intensive Care Med.44(6), 925–928 (2018).
  • World Sepsis Day: Building a “sepsis aware” healthcare system. (2017). www.rcgp.org.uk/clinical-and-research/about/clinical-news/2017/november/world-sepsis-day.aspx
  • Paoli CJ , ReynoldsMA , SinhaM , GitlinM , CrouserE. Epidemiology and costs of sepsis in the United States-An analysis based on timing of diagnosis and severity level. Crit. Care Med.46(12), 1889–1897 (2018).
  • Zanotti-Cavazzoni SL . Long-term cognitive impairment and functional disability among survivors of severe sepsis. Yearb. Crit. Care Med.20(11), 188–190 (2011).
  • Hajj J , BlaineN , SalavaciJ , JacobyD. The “Centrality of Sepsis”: a review on incidence, mortality and cost of care. Healthcare6(3), 90–97 (2018).
  • Hotchkiss RS , NicholsonDW. Apoptosis and caspases regulate death and inflammation in sepsis. Nat. Rev. Immunol.6(11), 813–822 (2006).
  • Celes MRN , MalvestioLM , SuadicaniSOet al. Disruption of calcium homeostasis in cardiomyocytes underlies cardiac structural and functional changes in severe sepsis. PLoS ONE8(7), e68809 (2013).
  • Pierrakos C , VincentJ-L. Sepsis biomarkers: a review. Crit. Care.14(1), R15 (2010).
  • Jensen JU , BouadmaL. Why biomarkers failed in sepsis. Intensive Care Med.42(12), 2049–2051 (2016).
  • Klein DJ , FosterD , WalkerPM , BagshawSM , MekonnenH , AntonelliM. Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: a post hoc analysis of the EUPHRATES trial. Intensive Care Med.44(12), 2205–2212 (2018).
  • Vincent JL , RameshMK , ErnestDet al. A randomized, double-blind, placebo-controlled, Phase IIb study to evaluate the safety and efficacy of recombinant human soluble thrombomodulin, ART-123, in patients with sepsis and suspected disseminated intravascular coagulation. Crit. Care Med.41(9), 2069–2079 (2013).
  • Bruse N , LeijteGP , PickkersP , KoxM. New frontiers in precision medicine for sepsis-induced immunoparalysis. Expert Rev. Clin. Immunol.15(3), 251–263 (2019).
  • Scicluna BP , van VughtLA , ZwindermanAHet al. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir. Med.5(10), 816–826 (2017).
  • Antcliffe DB , GordonAC. Why understanding sepsis endotypes is important for steroid trials in septic shock. Crit. Care Med.47(12), 1782–1784 (2019).
  • Carson WF , CavassaniKA , DouY , KunkelSL. Epigenetic regulation of immune cell functions during post-septic immunosuppression. Epigenetics6(3), 273–283 (2011).
  • Hotchkiss A , FeridooniT , ZhangF , PasumarthiKBS. The effects of calcium channel blockade on proliferation and differentiation of cardiac progenitor cells. Cell Calcium55(3), 238–251 (2014).
  • Hotchkiss RS , MonneretG , PayenD. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat. Rev. Immunol.13, 862–874 (2013).
  • Tsu L , ChingTT. Sepsis: the future is bright. Crit. Care Med.34(3), 2484–2485 (2006).
  • Martin GS , ManninoDM , MossM. The effect of age on the development and outcome of adult sepsis. Crit. Care Med.34(1), 15–21 (2006).
  • Munford RS , PuginJ. Normal responses to injury prevent systemic inflammation and can be immunosuppressive. Am. J. Respir. Crit. Care Med.163, 316–321 (2001).
  • Busslinger M , TarakhovskyA. Epigenetic control of immunity. Cold Spring Harb. Perspect. Biol.6(6), 373–380 (2014).
  • Bierne H , HamonM , CossartP. Epigenetics and Bacterial Infections. Cold Spring Harb. Perspect. Med.2(12), a010272–a010272 (2012).
  • Silmon de Monerri NC , KimK. Pathogens hijack the epigenome: a new twist on host–pathogen interactions. Am. J. Pathol.184(4), 897–911 (2014).
  • Cizmeci D , DempsterEL , ChampionOLet al. Mapping epigenetic changes to the host cell genome induced by Burkholderia pseudomallei reveals pathogen-specific and pathogen-generic signatures of infection. Sci. Rep.6(1), 30861 (2016).
  • Davis FM , SchallerMA , DendekkerAet al. Sepsis induces prolonged epigenetic modifications in bone marrow and peripheral macrophages impairing inflammation and wound healing. Arterioscler. Thromb. Vasc. Biol.39(11), 2353–2366 (2019).
  • Zhang H , RodriguezS , WangLet al. Sepsis induces hematopoietic stem cell exhaustion and myelosuppression through distinct contributions of TRIF and MYD88. Stem Cell Rep.6(6), 940–956 (2016).
  • Rubio I , OsuchowskiMF , Shankar-HariMet al. Current gaps in sepsis immunology: new opportunities for translational research. Lancet Infect. Dis.19(12), e422–e436 (2019).
  • Venet F , MonneretG. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat. Rev. Nephrol.14(2), 121–137 (2018).
  • Vught LA , KlouwenbergPMC , SpitoniCet al. Incidence, risk factors and attributable mortality of secondary infections in the intensive care unit after admission for sepsis. JAMA315(14), 1469 (2016).
  • Arens C , BajwaSA , KochCet al. Sepsis-induced long-term immune paralysis-results of a descriptive, explorative study. Crit. Care.20(3), 93 (2016).
  • Nelson JE , CoxCE , HopeAA , CarsonSS. Chronic critical illness. Am. J. Respir. Crit. Care Med.182(4), 446–454 (2010).
  • Mira JC , GentileLF , MathiasBJet al. Sepsis pathophysiology, chronic critical illness, and persistent inflammation-Immunosuppression and catabolism syndrome. Crit. Care Med.45(2), 253–262 (2017).
  • Rawal G , YadavS , KumarR. Post-intensive care syndrome: an overview. J. Transl. Intern. Med.5(2), 90–92 (2017).
  • Prescott HC , AngusDC. Enhancing recovery from sepsis: a review. J. Am. Med. Assoc.319(1), 62–75 (2018).
  • Quartin AA . Magnitude and duration of the effect of sepsis on survival. J. Am. Med. Assoc.277(13), 1058–1063 (1997).
  • Perl TM . Long-term survival and function after suspected gram-negative sepsis. J. Am. Med. Assoc.274(4), 338–345 (1995).
  • Uhel F , AzzaouiI , GrégoireMet al. Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in patients with sepsis. Am. J. Respir. Crit. Care Med.196(3), 315–327 (2017).
  • Monneret G , DebardA-L , VenetFet al. Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis. Crit. Care Med.31(7), 2068–2071 (2003).
  • Gentile LF , CuencaAG , EfronPAet al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J. Trauma Acute Care Surg.72(6), 1491–1501 (2012).
  • Cross D , DruryR , HillJ , PollardAJ. Epigenetics in sepsis: understanding its role in endothelial dysfunction, immunosuppression and potential therapeutics. Front. Immunol.10(3), 1363 (2019).
  • Raith EP , UdyAA , BaileyMet al. Prognostic accuracy of the SOFA score, SIRS criteria, and qSOFA score for in-hospital mortality among adults with suspected infection admitted to the intensive care unit. J. Am. Med. Assoc.317(3), 290–300 (2017).
  • Iskander KN , OsuchowskiMF , Stearns-KurosawaDJet al. Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding. Physiol. Rev.93(3), 1247–1288 (2013).
  • Textoris J , GordonAC. Sepsis: who will shoot first? Pharma or diagnostics?Intensive Care Med.44(8), 1331–1333 (2018).
  • FDA . Biomarker qualification program. Biomark. Qualif. Progr. (2017). www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/cder-biomarker-qualification-program
  • Bock C . Epigenetic biomarker development. Epigenomics1(1), 99–110 (2009).
  • Pfortmueller CA , MeiselC , FuxM , SchefoldJC. Assessment of immune organ dysfunction in critical illness: utility of innate immune response markers. Intensive care Med. Exp.5(1), 49 (2017).
  • Samraj RS , ZingarelliB , WongHR. Role of biomarkers in sepsis care. Shock40(5), 358–365 (2013).
  • Goh C , KnightJC. Enhanced understanding of the host–pathogen interaction in sepsis: new opportunities for omic approaches. Lancet Respir. Med.5(3), 212–223 (2017).
  • García-Giménez JL . Epigenetic Biomarkers and Diagnostics, 1st Edition.Academic Press, London, UK (2016).
  • García-Giménez JL , Mena-MolláS , Beltrán-GarcíaJ , Sanchis-GomarF. Challenges in the analysis of epigenetic biomarkers in clinical samples. Clin. Chem. Lab. Med.55(10), 1474–1477 (2017).
  • García-Giménez JL , Seco-CerveraM , TollefsbolTOet al. Epigenetic biomarkers: current strategies and future challenges for their use in the clinical laboratory. Crit. Rev. Clin. Lab. Sci.54(7–8), 529–550 (2017.
  • Leentjens J , KoxM , VanDer Hoeven JG , NeteaMG , PickkersP. Immunotherapy for the adjunctive treatment of sepsis: from immunosuppression to immunostimulation time for a paradigm change?Am. J. Respir. Crit. Care Med.187(12), 1287–1293 (2013).
  • Vasilescu C , RossiS , ShimizuMet al. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS ONE4(10), 1–19 (2009).
  • Tudor S , GizaDE , LinHYet al. Cellular and Kaposi’s sarcoma-associated herpes virus microRNAs in sepsis and surgical trauma. Cell Death Dis.5(12), e1559 (2014).
  • Ma Y , VilanovaD , AtalarKet al. Genome-wide sequencing of cellular microRNAs edentifies a combinatorial expression signature diagnostic of sepsis. PLoS ONE8(10), e75918 (2013).
  • Reithmair M , BuschmannD , MärteMet al. Cellular and extracellular miRNAs are blood-compartment-specific diagnostic targets in sepsis. J. Cell. Mol. Med.21(10), 2403–2411 (2017).
  • McCall CE , YozaB , LiuT , ElGazzar M. Gene-specific epigenetic regulation in serious infections with systemic inflammation. J. Innate Immun.2, 395–405 (2010).
  • Jenuwein T , AllisCD. Translating the histone code. Science293(5532), 1074–1080 (2001).
  • Brinkmann V , ReichardU , GoosmannCet al. Neutrophil extracellular traps kill bacteria. Science303(5663), 1532–1535 (2004).
  • Kaplan JM . Neutrophil extracelullar traps (NETs): double-edged swords of innate immunity 1. J. Immunol.189(6), 2689–2695 (2013).
  • Pieterse E , HofstraJ , BerdenJ , HerrmannM , DiekerJ , vander Vlag J. Acetylated histones contribute to the immunostimulatory potential of neutrophil extracellular traps in systemic lupus erythematosus. Clin. Exp. Immunol.179(1), 68–74 (2015).
  • Dieker JW , FransenJH , Van BavelCCet al. Apoptosis-induced acetylation of histones is pathogenic in systemic lupus erythematosus. Arthritis Rheum.56(6), 1921–1933 (2007).
  • Baka Z , GyörgyB , GéherP , BuzásEI , FalusA , NagyG. Citrullination under physiological and pathological conditions. Joint Bone Spine79(5), 431–436 (2012).
  • Neeli I , RadicM. Knotting the NETs: analyzing histone modifications in neutrophil extracellular traps. Arthritis Res. Ther.14(2), 115 (2012).
  • Zhang X , BoltM , GuertinMJet al. Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor target gene activation. Proc. Natl Acad. Sci.109(33), 13331–13336 (2012).
  • Cherrington BD , ZhangX , McElweeJL , MorencyE , AnguishLJ , CoonrodSA. Potential role for PAD2 in gene regulation in breast cancer cells. PLoS ONE7(7), 1–12 (2012).
  • Göranson SP , ThålinC , LundströmAet al. Circulating H3Cit is elevated in a human model of endotoxemia and can be detected bound to microvesicles. Sci. Rep.8(1), 12641 (2018).
  • Iba T , OguraH. Role of extracellular vesicles in the development of sepsis-induced coagulopathy. J. Intensive Care.6(1), 68 (2018).
  • Pérez-Cremades D , Bueno-BetíC , García-GiménezJLet al. Extracellular histones disarrange vasoactive mediators release through a COX-NOS interaction in human endothelial cells. J. Cell. Mol. Med.21(8), 1584–1592 (2017).
  • Alhamdi Y , TohC-H. Recent advances in pathophysiology of disseminated intravascular coagulation: the role of circulating histones and neutrophil extracellular traps. Research6(3), 2143 (2017).
  • Yongqing L , LiuZ , LiuBet al. Citrullinated histone H3 – a novel target for treatment of sepsis. Surgery156(2), 229–234 (2014).
  • Sharma A , SinghK , AlmasanA. Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol. Biol.920(3), 613–626 (2012).
  • Yoza BK , McCallCE. Facultative heterochromatin formation at the IL-1 beta promoter in LPS tolerance and sepsis. Cytokine53(2), 145–152 (2011).
  • Jiang L , WangY , ZhuD , XueZ , MaoH. Alteration of histone H3 lysine 9 dimethylation in peripheral white blood cells of septic patients with trauma and cancer. Mol. Med. Rep.14(6), 5467–5474 (2016).
  • de Groot AE , PientaKJ. Epigenetic control of macrophage polarization: implications for targeting tumor-associated macrophages. Oncotarget9(29), 20908–20927 (2018).
  • Weiterer S , UhleF , LichtensternCet al. Sepsis induces specific changes in histone modification patterns in human monocytes. PLoS ONE10(3), 1–13 (2015).
  • Abeles RD , McPhailMJ , SowterDet al. CD14, CD16 and HLA-DR reliably identifies human monocytes and their subsets in the context of pathologically reduced HLA-DR expression by CD14hi/CD16neg monocytes: expansion of CD14hi/CD16pos and contraction of CD14lo/CD16pos monocytes in acute liver fail. Cytometry A81(10), 823–834 (2012).
  • Siegler BH , UhleF , LichtensternCet al. Impact of human sepsis on CCCTC-binding factor associated monocyte transcriptional response of Major Histocompatibility Complex II components. PLoS ONE13(9), e0204168 (2018).
  • Ostuni R , NatoliG , CassatellaMA , TamassiaN. Epigenetic regulation of neutrophil development and function. Semin. Immunol.28(2), 83–93 (2016).
  • Garnacho Montero J , Ortiz-LeybaC , Jiménez-JiménezJ , García-GarmendiaJL. Interleukin 10 and sepsis. Arch. Surg.135(7), 875 (2000).
  • Wen H , HogaboamCM , GauldieJ , KunkelSL. Severe sepsis exacerbates cell-mediated immunity in the lung due to an altered dendritic cell cytokine profile. Am. J. Pathol.168(6), 1940–1950 (2006).
  • Wen H , DouY , HogaboamCM , KunkelSL. Epigenetic regulation of dendritic cell – derived interleukin-12 facilitates immunosuppression after a severe innate immune response. Blood111(4), 1797–1804 (2008).
  • Cavaillon JM , Adib-ConquyM. Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit. Care.10(5), 1–8 (2006).
  • Arbibe L , SansonettiPJ. Epigenetic regulation of host response to LPS: causing tolerance while avoiding toll errancy. Cell Host Microbe.1(4), 244–246 (2007).
  • Gazzar M El , YozaBK , HuJY-Q , CousartSL , McCallCE. Epigenetic silencing of tumor necrosis factor α during endotoxin tolerance. J. Biol. Chem.282(37), 26857–26864 (2007).
  • Chan C , LiL , McCallCE , YozaBK. Endotoxin tolerance disrupts chromatin remodeling and NF- B transactivation at the IL-1 promoter. J. Immunol.175(1), 461–468 (2005).
  • Brogdon JL , XuY , SzaboSJet al. Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function. Blood109(3), 1123–1130 (2007).
  • Tsaprouni LG , ItoK , AdcockIM , PunchardN. Suppression of lipopolysaccharide- and tumour necrosis factor-α- induced interleukin (IL)-8 expression by glucocorticoids involves changes in IL-8 promoter acetylation. Clin. Exp. Immunol.150(1), 151–157 (2007).
  • Biswas SK , Lopez-CollazoE. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol.30(10), 475–487 (2009).
  • Gazzar ME , YozaBK , ChenX , GarciaBA , YoungNL , McCallCE. Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance. Mol. Cell. Biol.29(7), 1959–1971 (2009).
  • De Santa F , TotaroMG , ProsperiniE , NotarbartoloS , TestaG , NatoliG. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell130(6), 1083–1094 (2007).
  • Satoh T , TakeuchiO , VandenbonAet al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol.11(10), 936–944 (2010).
  • Delano MJ , WardPA. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol. Rev.274(1), 330–353 (2016).
  • Vachharajani V , McCallCE. Epigenetic and metabolic programming of innate immunity in sepsis. Innate Immun.25(5), 267–279 (2019).
  • Saccani S , NatoliG. Dynamic changes in histone H3 Lys 9 methylation occurring at tightly regulated inducible inflammatory genes. Genes Dev.16(3), 2219–2224 (2002).
  • Carson WF , CavassaniKA , ItoTet al. Impaired CD4+ T-cell proliferation and effector function correlates with repressive histone methylation events in a mouse model of severe sepsis. Eur. J. Immunol.40(4), 998–1010 (2010).
  • Pachot A , MonneretG , VoirinNet al. Longitudinal study of cytokine and immune transcription factor mRNA expression in septic shock. Clin. Immunol.114(1), 61–69 (2005).
  • Ansel KM , DjureticI , TanasaB , RaoA. Regulation of Th2 differentiation and Il4 locus accessibility. Annu. Rev. Immunol.24(1), 607–656 (2006).
  • Anolik JH , LooneyRJ , LundFE , RandallTD , SanzI. Insights into the heterogeneity of human B cells: diverse functions, roles in autoimmunity, and use as therapeutic targets. Immunol. Res.38(3), 1–18 (2010).
  • Viau M , ZoualiM. B-lymphocytes, innate immunity, and autoimmunity. Clin. Immunol.114(1), 17–26 (2005).
  • Zouali M . The epigenetic landscape of B lymphocyte tolerance to self. FEBS Lett.587(13), 2067–2073 (2013).
  • Wu H , DengY , FengYet al. Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity. Cell. Mol. Immunol.15(7), 676–684 (2018).
  • Shaknovich R , CerchiettiL , TsikitasLet al. DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation. Blood118(13), 3559–3569 (2011).
  • Lin YC , JhunjhunwalaS , BennerCet al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates the B cell fate. Nat. Immunol.11(7), 635–643 (2010).
  • Azagra A , Román-GonzálezL , CollazoOet al. In vivo conditional deletion of HDAC7 reveals its requirement to establish proper B lymphocyte identity and development. J. Exp. Med.213(12), 2591–2601 (2016).
  • Schatz DG , JiY. Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol.11(4), 251–263 (2011).
  • Su IH , BasavarajA , KrutchinskyANet al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat. Immunol.4(2), 124–131 (2003).
  • Nicholas JS . Anti- inflammatory mechanisms of sepsis. Contrib Microbiol.17(5), 107–125 (2011).
  • Li G , ZanH , XuZ , CasaliP. Epigenetics of the antibody response. Trends Immunol.34(9), 460–470 (2013).
  • Jacobson KL . Regulation of germinal center, B-cell memory, and plasma cell formation by histone modifiers. Front. Immunol.5(3), 1–7 (2014).
  • Caganova M , CarrisiC , VaranoGet al. Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J. Clin. Invest.123(12), 5009–5022 (2013).
  • Holdt LM , StahringerA , SassKet al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat. Commun.7(1), 124–129 (2016).
  • Wang K , LongB , LiuFet al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur. Heart J.37(33), 2602a–2611a (2016).
  • Liu F , LiY , JiangRet al. MiR-132 inhibits lipopolysaccharide-induced inflammation in alveolar macrophages by the cholinergic anti-inflammatory pathway. Exp. Lung Res.41(5), 261–269 (2015).
  • Ying H , KangY , ZhangHet al. MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway. J. Immunol.194(3), 1239–1251 (2015).
  • Brudecki L , FergusonDA , McCallCE , ElGazzar M. MicroRNA-146a and RBM4 form a negative feed-forward loop that disrupts cytokine mRNA translation following TLR4 responses in human THP-1 monocytes. Immunol. Cell Biol.91(8), 532–540 (2013).
  • Precone V , StornaiuoloG , AmatoA , BrancaccioG , NardielloS , GaetaGB. Different changes in mitochondrial apoptotic pathway in lymphocytes and granulocytes in cirrhotic patients with sepsis. Liver Int.33(6), 834–842 (2013).
  • Shah MY , CalinGA. The mix of two worlds: non-coding RNAs and hormones. Nucleic Acid Ther.23(1), 2–8 (2013).
  • Boomer JS , ToK , ChangKCet al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA306(23), 2594–2605 (2011).
  • Giza DE , Fuentes-MatteiE , BullockMDet al. Cellular and viral microRNAs in sepsis: mechanisms of action and clinical applications. Cell Death Differ.23(12), 1906–1918 (2016).
  • Tacke F , RoderburgC , BenzFet al. Levels of circulating mir-133a are elevated in sepsis and predict mortality in critically ill patients. Crit. Care Med.42(5), 1096–1104 (2014).
  • Roderburg C , LueddeM , Vargas CardenasDet al. Circulating microRNA-150 serum levels predict survival in patients with critical illness and sepsis. PLoS ONE8(1), e54612 (2013).
  • Caserta S , KernF , CohenJ , DrageS , NewburySF , LlewelynMJ. Circulating plasma microRNAs can differentiate human sepsis and Systemic Inflammatory Response Syndrome (SIRS). Sci. Rep.6(15), 1–13 (2016).
  • Wang J , YuM , YuGet al. Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem. Biophys. Res. Commun.394(1), 184–188 (2010).
  • Wu Y , LiC , HeYet al. Relationship between expression of microRNA and inflammatory cytokines plasma level in pediatric patients with sepsis. Chinese J. Pediatr.52(1), 28–33 (2014).
  • Wang H , ZhangP , ChenW , FengD , JiaY , XieLX. Evidence for serum miR-15a and miR-16 levels as biomarkers that distinguish sepsis from systemic inflammatory response syndrome in human subjects. Clin. Chem. Lab. Med.50(8), 1423–1428 (2012).
  • Han Y , DaiQC , ShenHL , ZhangXW. Diagnostic value of elevated serum miRNA-143 levels in sepsis. J. Int. Med. Res.44(4), 875–881 (2016).
  • Wang HJ , ZhangPJ , ChenWJ , FengD , JiaYH , XieLX. Four serum microRNAs identified as diagnostic biomarkers of sepsis. J. Trauma Acute Care Surg.73(4), 850–854 (2012).
  • Yoshikawa T , TakataA , OtsukaMet al. Silencing of microRNA-122 enhances interferon-α signaling in the liver through regulating SOCS3 promoter methylation. Sci. Rep.2, 1–10 (2012).
  • Wang X , WangX , LiuXet al. miR-15a/16 are upreuglated in the serum of neonatal sepsis patients and inhibit the LPS-induced inflammatory pathway. Int. J. Clin. Exp. Med.8(4), 5683–5690 (2015).
  • Liu X-F , WangR-Q , HuBet al. MiR-15a contributes abnormal immune response in myasthenia gravis by targeting CXCL10. Clin. Immunol.164, 106–113 (2016).
  • Puskarich MA , NandiU , ShapiroNI , TrzeciakS , KlineJA , JonesAE. Detection of microRNAs in patients with sepsis. J. Acute Dis.4(2), 101–106 (2015).
  • Möhnle P , HirschbergerS , HinskeLCet al. MicroRNAs 143 and 150 in whole blood enable detection of T-cell immunoparalysis in sepsis. Mol. Med.24(1), 54 (2018).
  • Alivernini S , GremeseE , McSharryCet al. MicroRNA-155-at the critical interface of innate and adaptive immunity in arthritis. Front. Immunol.8(2), 1932 (2017).
  • Lan C , ShiX , GuoN , PeiH , ZhangH. Value of serum miR-155-5p and miR-133a-3p expression for the diagnosis and prognosis evaluation of sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue.28(8), 694–698 (2016).
  • Yang Z-B , ChenW-W , ChenH-P , CaiS-X , LinJ-D , QiuL-Z. MiR-155 aggravated septic liver injury by oxidative stress-mediated ER stress and mitochondrial dysfunction via targeting Nrf-2. Exp. Mol. Pathol.105(3), 387–394 (2018).
  • Han Y , LiY , JiangY. The prognostic value of plasma microRNA-155 and microRNA-146a level in severe sepsis and sepsis-induced acute lung injury patients. Clin. Lab.62(12), 2355–2360 (2016).
  • Wang Q , ZhaoC , CaiQ , ZhuH. Expression of microRNA-155 and regulative T cell in sepsis patients and their relationship. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue.26(3), 179–183 (2014).
  • Wang H , ZhangP , ChenW , FengD , JiaY , XieL. Serum microRNA signatures identified by Solexa sequencing predict sepsis patients’ mortality: a prospective observational study. PLoS ONE7(6), 1–9 (2012).
  • Wang H , YuB , DengJ , JinY , XieL. Serum miR-122 correlates with short-term mortality in sepsis patients. Crit. Care.18(6), 704 (2014).
  • Wang HJ , DengJ , WangJYet al. Serum miR-122 levels are related to coagulation disorders in sepsis patients. Clin. Chem. Lab. Med.52(6), 927–933 (2014).
  • Roderburg C , BenzF , Vargas-CardenasDet al. Elevated miR-122 serum levels are an independent marker of liver injury in inflammatory diseases. Liver Int.35(4), 1172–1184 (2015).
  • Liu S , LiuC , WangZ , HuangJ , ZengQ. microRNA-23a-5p acts as a potential biomarker for sepsis-induced acute respiratory distress syndrome in early stage. Cell. Mol. Biol.62(2), 31–37 (2016).
  • Zhang H , LiH , ShaikhA , CaudleY , YaoB , YinD. Inhibition of microRNA-23b attenuates immunosuppression during late sepsis through NIK, TRAF1 and XIAP. J. Infect. Dis.218(2), 300–311 (2018).
  • Yao L , LiuZ , ZhuJ , LiB , ChaiC , TianY. Clinical evaluation of circulating microRNA-25 level change in sepsis and its potential relationship with oxidative stress. Int. J. Clin. Exp. Pathol.8(7), 7675–7684 (2015).
  • van der Pol E , BöingAN , GoolEL , NieuwlandR. Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J. Thromb. Haemost.14(1), 48–56 (2016).
  • Real JM , FerreiraLRP , EstevesGHet al. Exosomes from patients with septic shock convey miRNAs related to inflammation and cell cycle regulation: new signaling pathways in sepsis? Crit. Care. 22(1), 68 (2018).
  • Wu J , WangY , LiL. Functional significance of exosomes applied in sepsis: a novel approach to therapy. Biochim. Biophys. Acta - Mol. Basis Dis.1863(1), 292–297 (2017).
  • Gao K , JinJ , HuangCet al. Exosomes derived from septic mouse serum M modulate immune responses via exosome-associated cytokines. Front. Immunol.10(2), 1560 (2019).
  • Vasilescu C , DragomirM , TanaseMet al. Circulating miRNAs in sepsis - a network under attack: an in-silico prediction of the potential existence of miRNA sponges in sepsis. PLoS ONE12(8), 1–21 (2017).
  • Momen-Heravi F , BalaS. miRNA regulation of innate immunity. J. Leukoc. Biol.103(6), 1205–1217 (2018).
  • Curtale G . MiRNAs at the crossroads between Innate immunity and cancer: focus on macrophages. Cells7(2), 12 (2018).
  • Yuan X , BergN , LeeJWet al. MicroRNA miR-223 as regulator of innate immunity. J. Leukoc. Biol.104(3), 515–524 (2018).
  • Wu J , NiuP , ZhaoYet al. Impact of miR-223-3p and miR-2909 on inflammatory factors IL-6, IL-1ß, and TNF-α, and the TLR4/TLR2/NF-κB/STAT3 signaling pathway induced by lipopolysaccharide in human adipose stem cells. PLoS ONE14(2), e0212063 (2019).
  • Vigorito E , KohlhaasS , LuD , LeylandR. miR-155: an ancient regulator of the immune system. Immunol. Rev.253(1), 146–157 (2013).
  • Taganov KD , BoldinMP , ChangK-J , BaltimoreD. NF- B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci.103(33), 12481–12486 (2006).
  • He X , JingZ , ChengG. MicroRNAs: new eegulators of toll-like receptor signalling pathways. Biomed Res. Int.2014(3), 1–14 (2014).
  • Seeley JJ , BakerRG , MohamedGet al. Induction of innate immune memory via microRNA targeting of chromatin remodelling factors. Nature559(7712), 114–119 (2018).
  • Vergadi E , VaporidiK , TsatsanisC. Regulation of endotoxin tolerance and compensatory anti-inflammatory response syndrome by non-coding RNAs. Front. Immunol.9(2), 2705 (2018).
  • Xiao C , CaladoDP , GallerGet al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell131(1), 146–159 (2007).
  • Hippen KL , LoschiM , NichollsJ , MacDonaldKPA , BlazarBR. Effects of microRNA on regulatory T cells and implications for adoptive cellular therapy to ameliorate graft-versus-host disease. Front. Immunol.9(2), 57 (2018).
  • Yao R , MaY-L , LiangWet al. MicroRNA-155 modulates Treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1. PLoS ONE7(10), e46082 (2012).
  • Li L , ZhangJ , DiaoWet al. MicroRNA-155 and microRNA-21 promote the expansion of functional myeloid-derived suppressor cells. J. Immunol.192(3), 1034–1043 (2014).
  • Liu Q , ZhangM , JiangXet al. miR-223 suppresses differentiation of tumor-induced CD11b+Gr1+myeloid-derived suppressor cells from bone marrow cells. Int. J. Cancer129(11), 2662–2673 (2011).
  • Lu L-F , BoldinMP , ChaudhryAet al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell142(6), 914–929 (2010).
  • Boldin MP , TaganovKD , RaoDSet al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J. Exp. Med.208(6), 1189–1201 (2011).
  • Schuyler RP , MerkelA , RaineriEet al. Distinct trends of DNA methylation patterning in the innate and adaptive immune systems. Cell Rep.17(8), 2101–2111 (2016).
  • Hopp L , Loeffler-WirthH , NersisyanL , ArakelyanA , BinderH. Footprints of sepsis framed within community acquired pneumonia in the blood transcriptome. Front. Immunol.9(3), 1620 (2018).
  • Zemmour H , PlanerD , MagenheimJet al. Non-invasive detection of human cardiomyocyte death using methylation patterns of circulating DNA. Nat. Commun.9(1), 1443 (2018).
  • Dhas DBB , AshmiAH , BhatBV , KalaivaniS , ParijaSC. Comparison of genomic DNA methylation pattern among septic and non-septic newborns — an epigenome wide association study. Genomics Data3(2), 36–40 (2015).
  • Gongora MC , LobHE , LandmesserUet al. Loss of extracellular superoxide dismutase leads to acute lung damage in the presence of ambient air: a potential mechanism underlying adult respiratory distress syndrome. Am. J. Pathol.173(4), 915–926 (2008).
  • Kang S-C , KimB-R , LeeS-Y , ParkT-S. Sphingolipid metabolism and obesity-induced inflammation. Front Endocrinol.4(2), 67 (2013).
  • Lorente-Sorolla C , Garcia-GomezA , Català-MollFet al. Inflammatory cytokines and organ dysfunction associate with the aberrant DNA methylome of monocytes in sepsis. Genome Med.11(1), 66 (2019).
  • Binnie A , WalshCJ , HuPet al. Epigenetic profiling in severe sepsis: a pilot study of DNA methylation profiles in critical illness. Crit. Care Med.1(1), 1–9 (2019).
  • Angrisano T , PeroR , PelusoSet al. LPS-induced IL-8 activation in human intestinal epithelial cells is accompanied by specific histone H3 acetylation and methylation changes. BMC Microbiol.10(1), 172 (2010).
  • McClure EA , NorthCM , KaminskiNE , GoodmanJI. Changes in DNA methylation and gene expression during 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced suppression of the lipopolysaccharide-stimulated IgM response in splenocytes. Toxicol. Sci.120(2), 339–348 (2011).
  • Takahashi K , SugiY , NakanoKet al. Epigenetic control of the host gene by commensal bacteria in large intestinal epithelial cells. J. Biol. Chem.286(41), 35755–35762 (2011).
  • Dhas BB , AntonyHA , BhatV , NewtonB , ParijaSC. Global DNA methylation in neonatal sepsis. Indian J. Pediatr.82(4), 340–344 (2015).
  • Tendl KA , SchulzSMF , MechtlerTPet al. DNA methylation pattern of CALCA in preterm neonates with bacterial sepsis as a putative epigenetic biomarker. Epigenetics8(12), 1261–1267 (2013).
  • Matwiyoff GN , PrahlJD , MillerRJet al. Immune regulation of procalcitonin: a biomarker and mediator of infection. Inflamm. Res.61(5), 401–409 (2012).
  • Novakovic B , HabibiE , WangS-Yet al. β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell167(5), 1354–1368 (2016).
  • Vento-Tormo R , CompanyC , Rodríguez-UbrevaJet al. IL-4 orchestrates STAT6-mediated DNA demethylation leading to dendritic cell differentiation. Genome Biol.17(1), 4 (2016).
  • Yang X , WangX , LiuD , YuL , XueB , ShiH. Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b. Mol. Endocrinol.28(4), 565–574 (2014).
  • Cheng C , HuangC , MaT-Tet al. SOCS1 hypermethylation mediated by DNMT1 is associated with lipopolysaccharide-induced inflammatory cytokines in macrophages. Toxicol. Lett.225(3), 488–497 (2014).
  • Novakovic B , HabibiE , WangS-Yet al. β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell167(5), 1354–1368 (2016).
  • Unterberg M , KreuzerMJ , SchäferST , BazziZ , AdamzikM , RumpK. NFKB1 promoter DNA from nt+402 to nt+99 is hypomethylated in different human immune cells. PLoS ONE11(6), e0156702 (2016).
  • Schäfer ST , GessnerS , ScheragAet al. Hydrocortisone fails to abolish NF-κB1 protein nuclear translocation in deletion allele carriers of the NFKB1 promoter polymorphism (-94ins/delATTG) and is associated with increased 30-day mortality in septic shock. PLoS ONE9(8), 1–9 (2014).
  • Rump K , UnterbergM , DahlkeAet al. DNA methylation of a NF-κB binding site in the aquaporin 5 promoter impacts on mortality in sepsis. Sci. Rep.9(1), 18511 (2019).
  • Baron U , FloessS , WieczorekGet al. DNA demethylation in the humanFOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells. Eur. J. Immunol.37(9), 2378–2389 (2007).
  • Venet F , ChungCS , KheroufHet al. Increased circulating regulatory T cells (CD4+CD25+CD127-) contribute to lymphocyte anergy in septic shock patients. Intensive Care Med.35(4), 678–686 (2009).
  • Venet F , ChungC-S , MonneretGet al. Regulatory T cell populations in sepsis and trauma. J. Leukoc. Biol.83(3), 523–535 (2007).
  • Lai AY , MavD , ShahRet al. DNA methylation profiling in human b cells reveals immune regulatory elements and epigenetic plasticity at alu elements during b-cell activation. Genome Res.23(12), 2030–2041 (2013).
  • Gustave C-A , GossezM , DemaretJet al. Septic Shock shapes B cell response toward an exhausted-like/Immunoregulatory profile in patients. J. Immunol.200(7), 2418–2425 (2018).
  • Reitz MS , MannDL , EidenM , TrainorCD , ClarkeMF. DNA methylation and expression of HLA-DR alpha. Mol. Cell. Biol.4(5), 890–897 (1984).
  • Seguín-Estévez Q , DePalma R , KrawczykMet al. The transcription factor RFX protects MHC class II genes against epigenetic silencing by DNA methylation. J. Immunol.183(4), 2545–2553 (2009).
  • Lee-Chang C , RashidiA , MiskaJet al. Myeloid-derived suppressive cells promote B cell-mediated immunosuppression via transfer of PD-L1 in glioblastoma. Cancer Immunol. Res.7(12), 1928–1943 (2019).
  • Ost M , SinghA , PeschelA , MehlingR , RieberN , HartlD. Myeloid-derived suppressor cells in bacterial infections. Front. Cell. Infect. Microbiol.6(1), 37 (2016).
  • Sido JM , YangX , NagarkattiPS , NagarkattiM. Δ 9 -Tetrahydrocannabinol-mediated epigenetic modifications elicit myeloid-derived suppressor cell activation via STAT3/S100A8. J. Leukoc. Biol.97(4), 677–688 (2015).
  • Clark SR , MaAC , TavenerSAet al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med.13(4), 463–469 (2007).
  • Xu J , ZhangX , PelayoRet al. Extracellular histones are major mediators of death in sepsis. Nat. Med.15, 1318–1321 (2009).
  • Gould TJ , LysovZ , LiawPC. Extracellular DNA and histones: double-edged swords in immunothrombosis. J. Thromb. Haemost.13(1), S82–S91 (2015).
  • Abrams ST , ZhangN , MansonJet al. Circulating histones are mediators of trauma-associated lung injury. Am. J. Respir. Crit. Care Med.187(1), 160–169 (2013).
  • Semeraro F , AmmolloCT , MorrisseyJHet al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood118(7), 1952–1961 (2011).
  • Fuchs TA , BhandariAA , WagnerDD. Histones induce rapid and profound thrombocytopenia in mice. Blood118(13), 3708–3714 (2011).
  • Kordbacheh F , O’MearaCH , CouplandLA , LelliottPM , ParishCR. Extracellular histones induce erythrocyte fragility and anemia. Blood130(26), 2884–2888 (2017).
  • Alhamdi Y , AbramsST , ChengZet al. Circulating histones are major mediators of cardiac injury in patients with sepsis. Crit. Care Med.43(10), 2094–2103 (2015).
  • García-Giménez JL , Romá-MateoC , CarbonellNet al. A new mass spectrometry-based method for the quantification of histones in plasma from septic shock patients. Sci. Rep.7(1), 1–10 (2017).
  • Chen QX , YeL , JinYHet al. Circulating nucleosomes as a predictor of sepsis and organ dysfunction in critically ill patients. Int. J. Infect. Dis.16(7), 558–564 (2012).
  • Liu Z , NiS , ChenGet al. Histones-mediated lymphocyte apoptosis during sepsis is dependent on p38 phosphorylation and mitochondrial permeability transition. PLoS ONE8(10), e77131 (2013).
  • Raffray L , DouchetI , AugustoJet al. Septic shock sera containing circulating histones induce dendritic cell-regulated necrosis in fatal septic shock patients. Crit. Care Med.43(4), e107–e116 (2015).
  • Allam R , DarisipudiMN , TschoppJ , AndersHJ. Histones trigger sterile inflammation by activating the NLRP3 inflammasome. Eur. J. Immunol.43, 3336–3342 (2013).
  • Ibañez-Cabellos JS , AguadoC , Pérez-CremadesDet al. Extracellular histones activate autophagy and apoptosis via mTOR signaling in human endothelial cells. Biochim. Biophys. Acta - Mol. Basis Dis.1864(10), 3234–3246 (2018).
  • Arts RJW , GresnigtMS , JoostenLAB , NeteaMG. Cellular metabolism of myeloid cells in sepsis. J. Leukoc. Biol.101(1), 151–164 (2017).
  • Patil NK , BohannonJK , SherwoodER. Immunotherapy: a promising approach to reverse sepsis-induced immunosuppression. Pharmacol. Res.111(3), 688–702 (2016).
  • Bonizzio CR , ClaraM , RodriguesT , SorianoFG. The viability of using epigenetic drugs as a treatment of patients in sepsis - a translational perspective. Rev. Med.95(1), 91–102 (2016).
  • Ciarlo E , SavvaA , RogerT. Epigenetics in sepsis: targeting histone deacetylases. Int. J. Antimicrob. Agents42(1), 8–12 (2013).
  • Li Yongqing , AlamHB. Creating a pro-survival and anti-inflammatory phenotype by modulation of acetylation in models of hemorrhagic and septic shock. Adv. Exp. Med. Biol.710(5), 107–133 (2012).
  • Knethen A , BrüneB. Histone deacetylation inhibitors as therapy concept in sepsis. Int. J. Mol. Sci.20(2), 346 (2019).
  • Chi H , FlavellRA. Acetylation of MKP-1 and the control of inflammation. Sci. Signal.1(41), 44 (2008).
  • Cao W , BaoC , PadalkoE , LowensteinCJ. Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling. J. Exp. Med.205(6), 1491–1503 (2008).
  • Leoni F , FossatiG , LewisECet al. The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol. Med.11(12), 1–15 (2005).
  • Li Y , AlamHB. Creating a pro-survival and anti-inflammatory phenotype by modulation of acetylation in models of hemorrhagic and septic shock. Adv. Exp. Med. Biol.710(7), 107–133 (2012).
  • Huang N , KatzJP , MartinDR , WuGD. Inhibition of IL-8 gene expression in Caco-2 cells by compounds which induce histone hyperacetylation. Cytokine9(1), 27–36 (1997).
  • Krämer OH , GöttlicherM, HeinzelT. Histone deacetylase as a therapeutic target. Trends Endocrinol. Metab.12(7), 294–300 (2001).
  • Adam E , QuivyV , BexFet al. Potentiation of tumor necrosis factor-induced NF-kB activation by deacetylase inhibitors is associated with a delayed cytoplasmic reappearance of IkBa. Mol. Cell. Biol.23(17), 6200–6209 (2003).
  • Ashburner BP , WesterheideSD , BaldwinAS. The p65 (RelA) subunit of NF- B interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol. Cell. Biol.21(20), 7065–7077 (2001).
  • Quivy V , AdamE , ColletteYet al. Synergistic activation of human immunodeficiency virus type 1 promoter activity by NF-kappaB and inhibitors of deacetylases: potential perspectives for the development of therapeutic strategies. J. Virol.76(21), 11091–11103 (2002).
  • Vanden-Berghe W , DeBosscher K , PlaisanceS , BooneE , HaegemanG. The nuclear factor-kappa B engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the Interleukin-6 gene promoter. J. Biol. Chem.274(45), 32091–32098 (1999).
  • Blanchard F , ChipoyC. Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases?Drug Discov. Today10(3), 197–204 (2005).
  • Wesche-Soldato DE , ChungC-S , Lomas-NeiraJ , DoughtyLA , GregorySH , AyalaA. In vivo delivery of caspase-8 or Fas siRNA improves the survival of septic mice. Blood106(7), 2295–2301 (2005).
  • Silva E , DeFigueiredo LFP , ColombariF. Prowess-shock trial: a protocol overview and perspectives. Shock34(1), 48–53 (2010).
  • Downing MD , EellsSJ , PettiboneS , HoaglandRJ , ChambersHF , TeamD. Drotrecogin alfa (activated) in adults with septic shock. N. Engl. J. Med.366(22), 2055–2064 (2012).
  • Gogos CA , DrosouE , BassarisHP , SkoutelisA. Pro-versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J. Infect. Dis.181(1), 176–180 (2000).
  • Tschaikowsky K , Hedwig-GeissingM , SchieleA , BremerF , SchywalskyM , SchüttlerJ. Coincidence of pro- and anti-inflammatory responses in the early phase of severe sepsis: longitudinal study of mononuclear histocompatibility leukocyte antigen-DR expression, procalcitonin, C-reactive protein, and changes in T-cell subsets in septic and p. Crit. Care Med.30(5), 1015–1023 (2002).
  • Pinsky MR . Sepsis: a pro- and anti-inflammatory disequilibrium syndrome. Contrib. Nephrol.132(132), 354–366 (2001).
  • Greer JR . Pathophysiology of cardiovascular dysfunction in sepsis. BJA Educ.15(6), 316–321 (2015).
  • Cavassani KA , CarsonWFIV , MoreiraAPet al. The post sepsis-induced expansion and enhanced function of regulatory T cells create an environment to potentiate tumor growth. Blood115(22), 4403–4411 (2010).
  • Nakahara M , ItoT , KawaharaKet al. Recombinant thrombomodulin protects mice against histone-induced lethal thromboembolism. PLoS ONE8(9), 75961 (2013).
  • Ekaney ML , OttoGP , SossdorfMet al. Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation. Crit. Care.18(5), 1–9 (2014).
  • Zeerleder S , ZwartB , WuilleminWAet al. Elevated nucleosome levels in systemic inflammation and sepsis. Crit. Care Med.31(7), 1947–1951 (2003).
  • Zeerleder S , StephanF , EmontsMet al. Circulating nucleosomes and severity of illness in children suffering from meningococcal sepsis treated with protein C. Crit. Care Med.40(12), 3224–3229 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.