217
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Holistic Insights into Meningitic Escherichia Coli Infection of Astrocytes Based on Whole Transcriptome Profiling

, , , , , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 1611-1632 | Received 13 Nov 2019, Accepted 04 Jun 2020, Published online: 17 Sep 2020

References

  • Brouwer MC , ThwaitesGE , TunkelAR , vande Beek D. Dilemmas in the diagnosis of acute community-acquired bacterial meningitis. Lancet380(9854), 1684–1692 (2012).
  • Furyk JS , SwannO , MolyneuxE. Systematic review: neonatal meningitis in the developing world. Trop. Med. Int. Health.16(6), 672–679 (2011).
  • Chang CJ , ChangWN , HuangLTet al. Bacterial meningitis in infants: the epidemiology, clinical features and prognostic factors. Brain Dev.26(3), 168–175 (2004).
  • Kim KS . Acute bacterial meningitis in infants and children. Lancet. Infect. Dis.10(1), 32–42 (2010).
  • Ouchenir L , RenaudC , KhanSet al. The epidemiology, management and outcomes of bacterial meningitis in infants. Pediatrics140(1), e20170476 (2017).
  • Sweeney MD , ZhaoZ , MontagneA , NelsonA R , ZlokovicBV. blood–brain barrier: from physiology to disease and back. Physiol. Rev.99(1), 21–78 (2019).
  • Bradbury MW . The structure and function of the blood–brain barrier. Fed. Proc.43(2), 186–190 (1984).
  • Sofroniew MV . Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci.16(5), 249–263 (2015).
  • Sofroniew MV . Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist20(2), 160–172 (2014).
  • Chew CL , ConosSA , UnalB , TergaonkarV. Noncoding RNAs: master regulators of inflammatory signaling. Trends. Mol. Med.24(1), 66–84 (2018).
  • Beermann J , PiccoliMT , ViereckJ , ThumT. noncoding RNAs in development and disease: background, mechanisms and therapeutic approaches. Physiol. Rev.96(4), 1297–1325 (2016).
  • Ulitsky I . Evolution to the rescue: using comparative genomics to understand long noncoding RNAs. Nat. Rev. Genet.17(10), 601–614 (2016).
  • Chen LL , YangL. Regulation of circRNA biogenesis. RNA Biol.12(4), 381–388 (2015).
  • Jeck WR , SorrentinoJA , WangKet al. Circular RNAs are abundant, conserved and associated with ALU repeats. RNA19(2), 141–157 (2013).
  • Yang L , FuJ , ZhouY. Circular RNAs and their emerging roles in immune regulation. Front. Immunol.9, 2977 (2018).
  • Salmena L , PolisenoL , TayY , KatsL , PandolfiPP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?Cell146(3), 353–358 (2011).
  • Yang R , HuangF , FuJet al. Differential transcription profiles of long noncoding RNAs in primary human brain microvascular endothelial cells in response to meningitic Escherichia coli. Sci. Rep.6, 38903 (2016).
  • Yang R , XuB , YangBet al. Circular RNA transcriptomic analysis of primary human brain microvascular endothelial cells infected with meningitic Escherichia coli. Mol. Ther. Nucleic. Acids.13, 651–664 (2018).
  • Liu C , ZhengH , YangMet al. Genome analysis and in vivo virulence of porcine extraintestinal pathogenic Escherichia coli strain PCN033. BMC Genomics16(1), 717 (2015).
  • Yang R , LiuW , MiaoLet al. Induction of VEGFA and Snail-1 by meningitic Escherichia coli mediates disruption of the blood–brain barrier. Oncotarget7(39), 63839–63855 (2016).
  • Zhu KP , ZhangCL , MaXLet al. Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance. Mol. Ther.27(3), 518–530 (2019).
  • Trapnell C , WilliamsBA , PerteaGet al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol.28(5), 511–515 (2010).
  • Guttman M , GarberM , LevinJZet al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol.28(5), 503–510 (2010).
  • Trapnell C , RobertsA , GoffLet al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc.7(3), 562–578 (2012).
  • Benjamini Y , DraiD , ElmerG , KafkafiN , GolaniI. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res.125(1–2), 279–284 (2001).
  • Zhou L , ChenJ , LiZet al. Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS ONE5(12), e15224 (2010).
  • Love MI , HuberW and ersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15(12), 550 (2014).
  • Enright AJ , JohnB , GaulUet al. MicroRNA targets in Drosophila. Genome Biol.5(1), R1 (2003).
  • Young MD , WakefieldMJ , SmythGK , OshlackA. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol.11(2), R14 (2010).
  • Kanehisa M , ArakiM , GotoSet al. KEGG for linking genomes to life and the environment. Nucleic Acids Res.36(Database issue), D480–484 (2008).
  • Mao X , CaiT , OlyarchukJG , WeiL. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics21(19), 3787–3793 (2005).
  • Joung J , EngreitzJM , KonermannSet al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature548(7667), 343–346 (2017).
  • Ashwal-Fluss R , MeyerM , PamudurtiNRet al. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell.56(1), 55–66 (2014).
  • Thomson DW , DingerME. Endogenous microRNA sponges: evidence and controversy. Nat. Rev. Genet.17(5), 272–283 (2016).
  • Hansen TB , JensenTI , ClausenBHet al. Natural RNA circles function as efficient microRNA sponges. Nature495(7441), 384–388 (2013).
  • Taganov KD , BoldinMP , ChangKJ , BaltimoreD. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA103(33), 12481–12486 (2006).
  • Rebane A , RunnelT , AabAet al. MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes. J. Allergy Clin. Immunol.134(4), 836–847e811 (2014).
  • Kim KS . Mechanisms of microbial traversal of the blood–brain barrier. Nat. Rev. Microbiol.6(8), 625–634 (2008).
  • Sweeney MD , SagareAP , ZlokovicBV. blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol.14(3), 133–150 (2018).
  • Sofroniew MV , VintersHV. Astrocytes: biology and pathology. Acta Neuropathol.119(1), 7–35 (2010).
  • Dong Y , BenvenisteEN. Immune function of astrocytes. Glia36(2), 180–190 (2001).
  • Luo Z , SuR , WangWet al. EV71 infection induces neurodegeneration via activating TLR7 signaling and IL-6 production. PLoS Pathog.15(11), e1008142 (2019).
  • Zhu B , YeJ , NieYet al. MicroRNA-15b modulates Japanese encephalitis virus-mediated inflammation via targeting RNF125. J. Immunol.195(5), 2251–2262 (2015).
  • Li S , LiY , ChenGet al. Restraining reactive oxygen species in Listeria monocytogenes promotes the apoptosis of glial cells. Redox. Rep.22(4), 190–196 (2017).
  • Gorelik L , FlavellRA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat. Med.7(10), 1118–1122 (2001).
  • Chen W , FrankME , JinW , WahlSM. TGF-beta released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity14(6), 715–725 (2001).
  • Lin X , WangR , ZhangJet al. Insights into human astrocyte response to H5N1 infection by microarray analysis. Viruses.7(5), 2618–2640 (2015).
  • Stoner TD , WestonTA , TrejoJ , DoranKS. Group B streptococcal infection and activation of human astrocytes. PLoS ONE10(6), e0128431 (2015).
  • Liu S , KielianT. MyD88 is pivotal for immune recognition of Citrobacter koseri and astrocyte activation during CNS infection. J. Neuroinflammation8, 35 (2011).
  • Casselli T , QureshiH , PetersonEet al. MicroRNA and mRNA transcriptome profiling in primary human astrocytes infected with Borrelia burgdorferi. PLoS ONE12(1), e0170961 (2017).
  • Wu GC , PanHF , LengRXet al. Emerging role of long noncoding RNAs in autoimmune diseases. Autoimmun. Rev.14(9), 798–805 (2015).
  • Rapicavoli NA , QuK , ZhangJet al. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Elife2, e00762 (2013).
  • Li Z , ChaoTC , ChangKYet al. The long noncoding RNA THRIL regulates TNFalpha expression through its interaction with hnRNPL. Proc. Natl Acad. Sci. USA111(3), 1002–1007 (2014).
  • Zhang F , WuL , QianJet al. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. J. Autoimmun.75, 96–104 (2016).
  • Zhang X , TangX , LiuK , HamblinMH , YinKJ. Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. J. Neurosci.37(7), 1797–1806 (2017).
  • Wang P , XuJ , WangY , CaoX. An interferon-independent lncRNA promotes viral replication by modulating cellular metabolism. Science358(6366), 1051–1055 (2017).
  • Chen LL . The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol.17(4), 205–211 (2016).
  • Memczak S , JensM , ElefsiniotiAet al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature495(7441), 333–338 (2013).
  • Rybak-Wolf A , StottmeisterC , GlazarPet al. Circular RNAs in the mammalian brain are highly abundant, conserved and dynamically expressed. Mol. Cell.58(5), 870–885 (2015).
  • Zhou B , YuJW. A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-beta1. Biochem. Biophys. Res. Commun.487(4), 769–775 (2017).
  • Chen BJ , MillsJD , TakenakaKet al. Characterization of circular RNAs landscape in multiple system atrophy brain. J. Neurochem.139(3), 485–496 (2016).
  • Lin SP , YeS , LongYet al. Circular RNA expression alterations are involved in OGD/R-induced neuron injury. Biochem. Biophys. Res. Commun.471(1), 52–56 (2016).
  • Mostowy S , ShenoyAR. The cytoskeleton in cell-autonomous immunity: structural determinants of host defence. Nat. Rev. Immunol.15(9), 559–573 (2015).
  • Wang W , BuB , XieMet al. Neural cell cycle dysregulation and central nervous system diseases. Prog. Neurobiol.89(1), 1–17 (2009).
  • Friedman RC , FarhKK , BurgeCB , BartelDP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res.19(1), 92–105 (2009).
  • Schulte LN , WestermannAJ , VogelJ. Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res.41(1), 542–553 (2013).
  • So AY , ZhaoJL , BaltimoreD. The Yin and Yang of microRNAs: leukemia and immunity. Immunol. Rev.253(1), 129–145 (2013).
  • Lee MO , YouCH , SonMYet al. Pro-fibrotic effects of PFKFB4-mediated glycolytic reprogramming in fibrous dysplasia. Biomaterials107, 61–73 (2016).
  • Fu QF , LiuY , FanYet al. Alpha-enolase promotes cell glycolysis, growth, migration and invasion in non-small cell lung cancer through FAK-mediated PI3K/AKT pathway. J. Hematol. Oncol.8, 22 (2015).
  • Cesana M , CacchiarelliD , LegniniIet al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell147(2), 358–369 (2011).
  • Ye Y , HeX , LuFet al. A lincRNA-p21/miR-181 family feedback loop regulates microglial activation during systemic LPS- and MPTP-induced neuroinflammation. Cell Death Dis.9(8), 803 (2018).
  • Han B , ZhangY , ZhangYet al. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy.14(7), 1164–1184 (2018).
  • Xin Y , LiZ , ZhengHet al. Neuro-oncological ventral antigen 1 (NOVA1): implications in neurological diseases and cancers. Cell Prolif.50(4), e12348 (2017).
  • Kim EK , YoonSO , JungWYet al. Implications of NOVA1 suppression within the microenvironment of gastric cancer: association with immune cell dysregulation. Gastric Cancer20(3), 438–447 (2017).
  • Hong YG , XuGS , YuGYet al. The RNA binding protein neuro-oncological ventral antigen 1 (NOVA1) regulates IL-6 mRNA stability to enhance JAK2-STAT3 signaling in CRC. Surg. Oncol.31, 67–74 (2019).
  • Rubin LL , StaddonJM. The cell biology of the blood–brain barrier. Annu. Rev. Neurosci.22, 11–28 (1999).
  • Stins MF , GillesF , KimKS. Selective expression of adhesion molecules on human brain microvascular endothelial cells. J. Neuroimmunol.76(1–2), 81–90 (1997).
  • Sofroniew MV . Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci.32(12), 638–647 (2009).
  • Zamanian JL , XuL , FooLCet al. Genomic analysis of reactive astrogliosis. J. Neurosci.32(18), 6391–6410 (2012).
  • Argaw AT , AspL , ZhangJet al. Astrocyte-derived VEGF-A drives blood–brain barrier disruption in CNS inflammatory disease. J. Clin. Invest.122(7), 2454–2468 (2012).
  • Zhang ZG , ZhangL , JiangQet al. VEGF enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brain. J. Clin. Invest.106(7), 829–838 (2000).
  • Cayrol R , WosikK , BerardJLet al. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat. Immunol.9(2), 137–145 (2008).
  • Bullard DC , HuX , SchoebTRet al. Intercellular adhesion molecule-1 expression is required on multiple cell types for the development of experimental autoimmune encephalomyelitis. J. Immunol.178(2), 851–857 (2007).
  • Yang RC , QuXY , XiaoSYet al. Meningitic Escherichia coli-induced upregulation of PDGF-B and ICAM-1 aggravates blood–brain barrier disruption and neuroinflammatory response. J. Neuroinflammation16(1), 101 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.