103
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Differentially Expressed Urinary Exo-miRs and Clinical Outcomes in Kidney Recipients on Short-Term Tacrolimus Therapy: A Pilot Study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 2019-2034 | Received 20 Apr 2020, Accepted 03 Aug 2020, Published online: 04 Dec 2020

References

  • Wong TC , LoC-M , FungJY. Emerging drugs for prevention of T-cell mediated rejection in liver and kidney transplantation. Expert Opin. Emerg. Drugs22(2), 123–136 (2017).
  • Zhang X , LinG , TanL , LiJ. Current progress of tacrolimus dosing in solid organ transplant recipients: pharmacogenetic considerations. Biomed. Pharmacother.102, 107–114 (2018).
  • Carminatti M , Tedesco-SilvaH , SilvaFernandes NM , Sanders-PinheiroH. Chronic kidney disease progression in kidney transplant recipients: a focus on traditional risk factors. Nephrology24(2), 141–147 (2019).
  • Tang JT , AndrewsLM , van GelderTet al. Pharmacogenetic aspects of the use of tacrolimus in renal transplantation: recent developments and ethnic considerations. Expert Opin. Drug Metab. Toxicol.12(5), 555–565 (2016).
  • Yu M , LiuM , ZhangW , MingY. Pharmacokinetics, pharmacodynamics and pharmacogenetics of tacrolimus in kidney transplantation. Curr. Drug Metab.19(6), 513–522 (2018).
  • Genvigir FDV , SalgadoPC , FelipeCRet al. Influence of the CYP3A4/5 genetic score and ABCB1 polymorphisms on tacrolimus exposure and renal function in Brazilian kidney transplant patients. Pharmacogenet. Genomics26(10), 462–472 (2016).
  • Campos-Salazar AB , GenvigirFDV , FelipeCRet al. Polymorphisms in mTOR and calcineurin signaling pathways are associated with long-term clinical outcomes in kidney transplant recipients. Front. Pharmacol.9, 1296 (2018).
  • Mas VR , LeTH , MalufDG. Epigenetics in kidney transplantation. Transplantation100(1), 23–38 (2016).
  • Saliminejad K , KhorramKhorshid HR , SoleymaniFard S , GhaffariSH. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J. Cell. Physiol.234(5), 5451–5465 (2019).
  • Metzinger-Le Meuth V , FourdinierO , CharnauxN , MassyZA , MetzingerL. The expanding roles of microRNAs in kidney pathophysiology. Nephrol. Dial. Transplant.34(1), 7–15 (2019).
  • Ledeganck KJ , GielisEM , AbramowiczD , StenvinkelP , ShielsPG , Van CraenenbroeckAH. MicroRNAs in AKI and kidney transplantation. Clin. J. Am. Soc. Nephrol.14(3), 454–468 (2019).
  • Janszky N , SüsalC. Circulating and urinary microRNAs as possible biomarkers in kidney transplantation. Transplant. Rev.32(2), 110–118 (2018).
  • Amrouche L , RabantM , AnglicheauD. MicroRNAs as biomarkers of graft outcome. Transplant. Rev.28(3), 111–118 (2014).
  • Soltaninejad E , NicknamMH , NafarMet al. Differential expression of microRNAs in renal transplant patients with acute T-cell mediated rejection. Transpl. Immunol.33(1), 1–6 (2015).
  • Domenico TD , JoelsonsG , MontenegroRM , ManfroRC. Upregulation of microRNA 142-3p in the peripheral blood and urinary cells of kidney transplant recipients with post-transplant graft dysfunction. Brazilian J. Med. Biol. Res.50(4), e5533 (2017).
  • Maluf DG , DumurCI , SuhJLet al. The urine microRNA profile may help monitor post-transplant renal graft function. Kidney Int.85(2), 439–449 (2014).
  • Karpman D , StåhlA , ArvidssonI. Extracellular vesicles in renal disease. Nat. Rev. Nephrol.13(9), 545–562 (2017).
  • Khurana R , RanchesG , SchaffererSet al. Identification of urinary exosomal noncoding RNAs as novel biomarkers in chronic kidney disease. RNA23(2), 142–152 (2017).
  • Abbasian N , HerbertKE , PawluczykI , BurtonJO , BevingtonA. Vesicles bearing gifts: the functional importance of micro-RNA transfer in extracellular vesicles in chronic kidney disease. Am. J. Physiol. Renal Physiol.315(5), F1430–F1443 (2018).
  • Li M , ZeringerE , BartaT , SchagemanJ , ChengA , VlassovAV. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philos. Trans. R. Soc. Lond. B Biol. Sci.369(1652), 20130502 (2014).
  • Ren G , ZhuJ , LiJ , MengX. Noncoding RNAs in acute kidney injury. J. Cell. Physiol.234(3), 2266–2276 (2019).
  • Silva HT , FelipeCR , GarciaVDet al. Planned randomized conversion from tacrolimus to sirolimus-based immunosuppressive regimen in de novo kidney transplant recipients. Am. J. Transplant13(12), 3155–3163 (2013).
  • Salgado PC , GenvigirFD , FelipeCRet al. Association of the PPP3CA c.249G>A variant with clinical outcomes of tacrolimus-based therapy in kidney transplant recipients. Pharmgenomics. Pers. Med.10, 101–106 (2017).
  • Genvigir FDV , NishikawaAM , FelipeCRet al. Influence of ABCC2, CYP2C8, and CYP2J2 Polymorphisms on Tacrolimus and Mycophenolate Sodium-Based Treatment in Brazilian Kidney Transplant Recipients. Pharmacotherapy37(5), 535–545 (2017).
  • Gheinani AH , VögeliM , BaumgartnerUet al. Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery. Sci. Rep.8(1), 3945 (2018).
  • Lane RE , KorbieD , AndersonW , VaidyanathanR , TrauM. Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci. Rep.5(1), 7639 (2015).
  • Wilflingseder J , RegeleH , PercoPet al. miRNA profiling discriminates types of rejection and injury in human renal allografts. Transplantation95(6), 835–841 (2013).
  • Rascio F , PontrelliP , AccetturoMet al. A type I interferon signature characterizes chronic antibody-mediated rejection in kidney transplantation. J. Pathol.237(1), 72–84 (2015).
  • Marabita F , de CandiaP , TorriA , TegnérJ , AbrignaniS , RossiRL. Normalization of circulating microRNA expression data obtained by quantitative real-time RT-PCR. Brief. Bioinform.17(2), 204–212 (2016).
  • Millán O , BuddeK , SommererCet al. Urinary miR-155-5p and CXCL10 as prognostic and predictive biomarkers of rejection, graft outcome and treatment response in kidney transplantation. Br. J. Clin. Pharmacol.83(12), 2636–2650 (2017).
  • Liang J , TangY , LiuZet al. Increased expression of miR-155 correlates with abnormal allograft status in solid organ transplant patients and rat kidney transplantation model. Life Sci.227, 51–57 (2019).
  • Medeiros T , MyetteRL , AlmeidaJR , SilvaAA , BurgerD. Extracellular vesicles: cell-derived biomarkers of glomerular and tubular injury. Cell. Physiol. Biochem.54(1), 88–109 (2020).
  • Chen T , WangC , YuHet al. Increased urinary exosomal microRNAs in children with idiopathic nephrotic syndrome. EBioMedicine39, 552–561 (2019).
  • Sonoda H , LeeBR , ParkK-Het al. miRNA profiling of urinary exosomes to assess the progression of acute kidney injury. Sci. Rep.9(1), 4692 (2019).
  • Oghumu S , BracewellA , NoriUet al. Acute pyelonephritis in renal allografts–a new role for MicroRNAs? Transplantation 97(5), 559–568 (2014).
  • Li W , YangS , QiaoR , ZhangJ. Potential value of urinary exosome-derived let-7c-5p in the diagnosis and progression of Type II diabetic nephropathy. Clin. Lab.64(5), 709–718 (2018).
  • Lorenzen JM , VolkmannI , FiedlerJet al. Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients. Am. J. Transplant.11(10), 2221–2227 (2011).
  • Wang B , JhaJC , HagiwaraSet al. Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney Int.85(2), 352–361 (2014).
  • Wang B , YaoK , HuuskesBMet al. Mesenchymal stem cells deliver exogenous MicroRNA-let7c via exosomes to attenuate renal fibrosis. Mol. Ther.24(7), 1290–1301 (2016).
  • Tsuji K , KitamuraS , WadaJ. Immunomodulatory and regenerative effects of mesenchymal stem cell-derived extracellular vesicles in renal diseases. Int. J. Mol. Sci.21(3), 756 (2020).
  • Wang I-K , SunK-T , TsaiT-Het al. MiR-20a-5p mediates hypoxia-induced autophagy by targeting ATG16L1 in ischemic kidney injury. Life Sci.136, 133–141 (2015).
  • Liu L-L , LiD , HeY-Let al. miR-210 protects renal cell against hypoxia-induced apoptosis by targeting HIF-1 alpha. Mol. Med.23, 258–271 (2017).
  • Tao J , YangX , HanZet al. Serum MicroRNA-99a helps detect acute rejection in renal transplantation. Transplant. Proc.47(6), 1683–1687 (2015).
  • Metzinger-Le Meuth V , MetzingerL. miR-223 and other miRNA’s evaluation in chronic kidney disease: innovative biomarkers and therapeutic tools. Non-coding RNA Res.4(1), 30–35 (2019).
  • Solé C , MolinéT , VidalM , Ordi-RosJ , Cortés-HernándezJ. An exosomal urinary miRNA signature for early diagnosis of renal fibrosis in lupus nephritis. Cells8(8), 773 (2019).
  • Yu Y , BaiF , QinNet al. Non-proximal renal tubule-derived urinary exosomal miR-200b as a biomarker of renal fibrosis. Nephron139(3), 269–282 (2018).
  • Liu X , DongC , JiangZet al. MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11. Exp. Cell Res.333(1), 155–163 (2015).
  • Conserva F , BarozzinoM , PesceFet al. Urinary miRNA-27b-3p and miRNA-1228-3p correlate with the progression of Kidney Fibrosis in Diabetic Nephropathy. Sci. Rep.9(1), 11357 (2019).
  • Mall C , RockeDM , Durbin-JohnsonB , WeissRH. Stability of miRNA in human urine supports its biomarker potential. Biomark. Med.7(4), 623–631 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.