178
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prognostic Value of the miRNA-27a and PPAR/RXRα Signaling Axis in Patients with Thyroid Carcinoma

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1825-1843 | Received 25 Apr 2020, Accepted 03 Sep 2020, Published online: 24 Sep 2020

References

  • Bray F , FerlayJ , SoerjomataramI , SiegelRL , TorreLA , JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.68(6), 394–424 (2018).
  • Fiore M , OliveriConti G , CaltabianoRet al. Role of emerging environmental risk factors in thyroid cancer: a brief review. Int. J. Environ. Res. Public Health16(7), 1185 (2019).
  • Hińcza K , KowalikA , KowalskaA. Current knowledge of germline genetic risk factors for the development of non-medullary thyroid cancer. Genes10(7), 482 (2019).
  • Pishkari S , ParyanM , HashemiM , BaldiniE , Mohammadi-YeganehS. The role of microRNAs in different types of thyroid carcinoma: a comprehensive analysis to find new miRNA supplementary therapies. J. Endocrinol. Invest.41(3), 269–283 (2018).
  • Cabanillas ME , McFaddenDG , DuranteC. Thyroid cancer. Lancet388(10061), 2783–2795 (2016).
  • Nettore I , ColaoA , MacchiaP. Nutritional and environmental factors in thyroid carcinogenesis. Int. J. Environ. Res. Public Health15(8), 1735 (2018).
  • Haugen BR , AlexanderEK , BibleKCet al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid26(1), 1–133 (2016).
  • Grant CS . Recurrence of papillary thyroid cancer after optimized surgery. Gland. Surg.4(1), 52–62 (2015).
  • Eszlinger M , PaschkeR. Molecular fine-needle aspiration biopsy diagnosis of thyroid nodules by tumor specific mutations and gene expression patterns. Mol. Cell Endocrinol.322(1–2), 29–37 (2010).
  • Cooper DS , DohertyGM , HaugenBRet al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid19(11), 1167–1214 (2009).
  • Cady B , RossiR. An expanded view of risk-group definition in differentiated thyroid carcinoma. Surgery104(6), 947–953 (1988).
  • Prasad NB , SomervellH , TufanoRPet al. Identification of genes differentially expressed in benign versus malignant thyroid tumors. Clin. Cancer Res.14(11), 3327–3337 (2008).
  • Dai L , WangY , ChenL , ZhengJ , LiJ , WuX. MiR-221, a potential prognostic biomarker for recurrence in papillary thyroid cancer. World J. Surg. Oncol.15(1), 11 (2017).
  • Macfarlane LA , MurphyPR. MicroRNA: biogenesis, function and role in cancer. Curr. Genomics11(7), 537–561 (2010).
  • Toraih EA , FawzyMS , MohammedEA , HusseinMH , El-LabbanMM. MicroRNA-196a2 biomarker and targetome network analysis in solid tumors. Mol. Diagn. Ther.20(6), 559–577 (2016).
  • Toraih EA , IbrahiemAT , FawzyMS , HusseinMH , Al-QahtaniSaM , ShaalanAaM. MicroRNA-34a: a key regulator in the hallmarks of renal cell carcinoma. Oxid. Med. Cell Longev.2017, 3269379 (2017).
  • Toraih EA , AlyNM , AbdallahHYet al. MicroRNA-target cross-talks: key players in glioblastoma multiforme. Tumour Biol.39(11), 1010428317726842 (2017).
  • Toraih EA , El-WazirA , AbdallahHY , TantawyMA , FawzyMS. Deregulated microRNA signature following glioblastoma irradiation. Cancer Control26(1), 1073274819847226 (2019).
  • Fawzy MS , ToraihEA , IbrahiemA , AbdeldayemH , MohamedAO , Abdel-DaimMM. Evaluation of miRNA-196a2 and apoptosis-related target genes: ANXA1, DFFA and PDCD4 expression in gastrointestinal cancer patients: a pilot study. PLoS ONE12(11), e0187310 (2017).
  • Fawzy MS , ToraihEA , AgeeliEA , Al-QahtanieSA , HusseinMH , KandilE. Noncoding RNAs orchestrate cell growth, death and drug resistance in renal cell carcinoma. Epigenomics12(3), 199–219 (2020).
  • Pallante P , VisoneR , FerracinMet al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr. Relat. Cancer13(2), 497–508 (2006).
  • Nikiforova MN , TsengGC , StewardD , DiorioD , NikiforovYE. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J. Clin. Endocrinol. Metab.93(5), 1600–1608 (2008).
  • He H , JazdzewskiK , LiWet al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl Acad. Sci. U S A102(52), 19075–19080 (2005).
  • Tetzlaff MT , LiuA , XuXet al. Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues. Endocr. Pathol.18(3), 163–173 (2007).
  • Chen YT , KitabayashiN , ZhouXK , FaheyTJ, ScognamiglioT3rd. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod. Pathol.21(9), 1139–1146 (2008).
  • Lee JC , ZhaoJT , Clifton-BlighRJet al. MicroRNA-222 and microRNA-146b are tissue and circulating biomarkers of recurrent papillary thyroid cancer. Cancer119(24), 4358–4365 (2013).
  • Li X , XuM , DingL , TangJ. MiR-27a: a novel biomarker and potential therapeutic target in tumors. J. Cancer10(12), 2836–2848 (2019).
  • Sun B , LiJ , ShaoDet al. Adipose tissue-secreted miR-27a promotes liver cancer by targeting FOXO1 in obese individuals. Onco. Targets Ther.8, 735–744 (2015).
  • Fletcher CE , DartDA , Sita-LumsdenA , ChengH , RenniePS , BevanCL. Androgen-regulated processing of the oncomir miR-27a, which targets prohibitin in prostate cancer. Hum. Mol. Genet.21(14), 3112–3127 (2012).
  • Colangelo T , PolcaroG , ZiccardiP , PucciB , MuccilloL , GalganiM. Proteomic screening identifies calreticulin as a miR-27a direct target repressing MHC class I cell surface exposure in colorectal cancer. Cell Death Dis.7(2), e2120 (2016).
  • Zhou S , HuangQ , ZhengS , LinK , YouJ , ZhangX. MiR-27a regulates the sensitivity of breast cancer cells to cisplatin treatment via BAK-SMAC/DIABLO-XIAP axis. Tumour Biol.37(5), 6837–6845 (2016).
  • Sun Y , YangX , LiuM , TangH. B4GALT3 up-regulation by miR-27a contributes to the oncogenic activity in human cervical cancer cells. Cancer Lett.375(2), 284–292 (2016).
  • Wang YL , GongWG , YuanQL. Effects of miR-27a upregulation on thyroid cancer cells migration, invasion, and angiogenesis. Genet. Mol. Res.15(4), (2016).
  • Raman P , KoenigRJ. Pax-8-PPAR-gamma fusion protein in thyroid carcinoma. Nat. Rev. Endocrinol.10(10), 616–623 (2014).
  • Placzkowski KA , ReddiHV , GrebeSK , EberhardtNL , MciverB. The role of the PAX8/PPARgamma fusion oncogene in thyroid cancer. PPAR Res.2008, 672829 (2008).
  • Marques AR , EspadinhaC , FriasMJet al. Underexpression of peroxisome proliferator-activated receptor (PPAR) gamma in PAX8/PPARgamma-negative thyroid tumours. Br. J. Cancer91(4), 732–738 (2004).
  • Espadinha C , PintoAE , LeiteV. Underexpression of PPARgamma is associated with aneuploidy and lower differentiation of thyroid tumours of follicular origin. Oncol. Rep.22(4), 907–913 (2009).
  • Wood WM , SharmaV , BauerleKTet al. PPARgamma promotes growth and invasion of thyroid cancer cells. PPAR Res.2011, 171765 (2011).
  • Hayashi N , NakamoriS , HiraokaNet al. Antitumor effects of peroxisome proliferator activate receptor gamma ligands on anaplastic thyroid carcinoma. Int. J. Oncol.24(1), 89–95 (2004).
  • Klaunig JE , BabichMA , BaetckeKPet al. PPARalpha agonist-induced rodent tumors: modes of action and human relevance. Crit. Rev. Toxicol.33(6), 655–780 (2003).
  • Michalik L , DesvergneB , WahliW. Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat. Rev. Cancer.4(1), 61–70 (2004).
  • Macejova D , GalbavyS , PodobaJ , BialesovaL , BrtkoJ. MRNA expression pattern of retinoic acid and retinoid X nuclear receptor subtypes in human thyroid papillary carcinoma. Oncol. Rep.30(5), 2371–2378 (2013).
  • Hoftijzer HC , LiuYY , MorreauHet al. Retinoic acid receptor and retinoid X receptor subtype expression for the differential diagnosis of thyroid neoplasms. Eur. J. Endocrinol.160(4), 631–638 (2009).
  • Klopper JP , HaysWR , SharmaV , BaumbuschMA , HershmanJM , HaugenBR. Retinoid X receptor-gamma and peroxisome proliferator-activated receptor-gamma expression predicts thyroid carcinoma cell response to retinoid and thiazolidinedione treatment. Mol. Cancer Ther.3(8), 1011–1020 (2004).
  • Casella C , MinistriniS , GalaniA , MastrialeF , CappelliC , PortolaniN. The new TNM staging system for thyroid cancer and the risk of disease downstaging. Front. Endocrinol.(Lausanne)9, 541 (2018).
  • Bustin SA , BenesV , GarsonJAet al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem.55(4), 611–622 (2009).
  • Livak KJ , SchmittgenTD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods25(4), 402–408 (2001).
  • Hebrant A , DomG , DewaeleMet al. MRNA expression in papillary and anaplastic thyroid carcinoma: molecular anatomy of a killing switch. PLoS ONE7(10), e37807 (2012).
  • Teng H , MaoF , LiangJet al. Transcriptomic signature associated with carcinogenesis and aggressiveness of papillary thyroid carcinoma. Theranostics8(16), 4345–4358 (2018).
  • Mitchell PS , ParkinRK , KrohEMet al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. U S A105(30), 10513–10518 (2008).
  • Hayes J , PeruzziPP , LawlerS. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med.20(8), 460–469 (2014).
  • Li S , LiJ , FeiBYet al. MiR-27a promotes hepatocellular carcinoma cell proliferation through suppression of its target gene peroxisome proliferator-activated receptor gamma. Chin. Med. J.128(7), 941–947 (2015).
  • Tang KQ , WangYN , ZanLS , YangWC. MiR-27a controls triacylglycerol synthesis in bovine mammary epithelial cells by targeting peroxisome proliferator-activated receptor gamma. J. Dairy Sci.100(5), 4102–4112 (2017).
  • Kim SY , KimAY , LeeHWet al. MiR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem. Biophys. Res. Commun.392(3), 323–328 (2010).
  • Liang J , TangJ , ShiHet al. MiR-27a-3p targeting RXRα promotes colorectal cancer progression by activating Wnt/β-catenin pathway. Oncotarget8(47), 82991–83008 (2017).
  • Tombolan L , ZampiniM , CasaraSet al. MicroRNA-27a contributes to rhabdomyosarcoma cell proliferation by suppressing RARA and RXRA. PLoS ONE10(4), e0125171 (2015).
  • Polvani S , TarocchiM , TempestiS , BenciniL , GalliA. Peroxisome proliferator activated receptors at the crossroad of obesity, diabetes, and pancreatic cancer. World J. Gastroenterol.22(8), 2441 (2016).
  • Portius D , SobolewskiC , FotiM. MicroRNAs-dependent regulation of PPARs in metabolic diseases and cancers. PPAR Res.2017, 7058424 (2017).
  • Oda Y , NakajimaM , TsuneyamaKet al. Retinoid X receptor α in human liver is regulated by miR-34a. Biochem. Pharmacol.90(2), 179–187 (2014).
  • Elnemr A , OhtaT , IwataKet al. PPARgamma ligand (thiazolidinedione) induces growth arrest and differentiation markers of human pancreatic cancer cells. Int. J. Oncol.17(6), 1157–1221 (2000).
  • Martelli ML , IulianoR , LePera Iet al. Inhibitory effects of peroxisome poliferator-activated receptor gamma on thyroid carcinoma cell growth. J. Clin. Endocrinol. Metab.87(10), 4728–4735 (2002).
  • Shen B , ChuES , ZhaoGet al. PPARgamma inhibits hepatocellular carcinoma metastases in vitro and in mice. Br. J. Cancer106(9), 1486 (2012).
  • Ogino S , ShimaK , BabaYet al. Colorectal cancer expression of peroxisome proliferator-activated receptor γ (PPARG, PPARgamma) is associated with good prognosis. Gastroenterology136(4), 1242–1250 (2009).
  • Dobson ME , Diallo-KrouE , GrachtchoukVet al. Pioglitazone induces a proadipogenic antitumor response in mice with PAX8-PPARgamma fusion protein thyroid carcinoma. Endocrinology152(11), 4455–4465 (2011).
  • Heaney AP , FernandoM , MelmedS. PPAR-γ receptor ligands: novel therapy for pituitary adenomas. J. Clin. Invest.111(9), 1381–1388 (2003).
  • Ishay-Ronen D , DiepenbruckM , KalathurRKRet al. Gain fat—lose metastasis: converting invasive breast cancer cells into adipocytes inhibits cancer metastasis. Cancer Cell35(1), 17–32.e6 (2019).
  • Patel L , PassI , CoxonP , DownesCP , SmithSA , MacpheeCH. Tumor suppressor and anti-inflammatory actions of PPARgamma agonists are mediated via upregulation of PTEN. Curr. Biol.11(10), 764–768 (2001).
  • Vella V , NicolosiML , GiulianoS , BellomoM , BelfioreA , MalaguarneraR. PPAR-γ agonists as antineoplastic agents in cancers with dysregulated IGF axis. Front. Endocrinol. (Lausanne)8, 31 (2017).
  • Cui Y , MiyoshiK , ClaudioEet al. Loss of the peroxisome proliferation-activated receptor gamma (PPARγ) does not affect mammary development and propensity for tumor formation but leads to reduced fertility. J. Biol. Chem.277(20), 17830–17835 (2002).
  • Ikezoe T , MillerCW , KawanoSet al. Mutational analysis of the peroxisome proliferator-activated receptor γ gene in human malignancies. Cancer Res.61(13), 5307–5310 (2001).
  • Kosti I , JainN , AranD , ButteAJ , SirotaM. Cross-tissue analysis of gene and protein expression in normal and cancer tissues. Sci. Rep.6(1), 1–6 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.