369
Views
1
CrossRef citations to date
0
Altmetric
Review

Epigenetics of Neuromuscular Disorders

ORCID Icon
Pages 2125-2139 | Received 08 Jul 2020, Accepted 04 Oct 2020, Published online: 06 Nov 2020

References

  • Deenen JC , HorlingsCG , VerschuurenJJ , VerbeekAL , van EngelenBG. The epidemiology of neuromuscular disorders: a comprehensive overview of the literature. J. Neuromuscul. Dis.2(1), 73–85 (2015).
  • Iolascon G , PaolettaM , LiguoriS , CurciC , MorettiA. Neuromuscular diseases and bone. Front. Endocrinol. (Lausanne)10, 794 (2019).
  • Bennett SA , TanazR , CobosSN , TorrenteMP. Epigenetics in amyotrophic lateral sclerosis: a role for histone post-translational modifications in neurodegenerative disease. Transl. Res.204, 19–30 (2019).
  • Cerrato F , SparagoA , ArianiFet al. DNA methylation in the diagnosis of monogenic diseases. Genes (Basel)11(4), e355 (2020).
  • Kariyawasam DST , D’SilvaA , LinC , RyanMM , FarrarMA. Biomarkers and the development of a personalized medicine approach in spinal muscular atrophy. Front. Neurol.10, 898 (2019).
  • Mroczek M , MachońL , FilipczyńskaI. Molecular biomarkers for neuromuscular disorders–challenges and future perspectives. Neurol. Neurochir. Pol.53(3), 173–180 (2019).
  • Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet.13, 484–492 (2012).
  • Goll MG , BestorTH. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem.74, 481–514 (2005).
  • Bannister AJ , KouzaridesT. Regulation of chromatin by histone modifications. Cell Res.21(3), 381–395 (2011).
  • Berger SL . The complex language of chromatin regulation during transcription. Nature447, 407–412 (2007).
  • Cremer T , CremerC. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet.2(4), 292–301 (2001).
  • Andrey G , MundlosS. The three-dimensional genome: regulating gene expression during pluripotency and development. Development144, 3646–3658 (2017).
  • Sun JH , ZhouL , EmersonDJet al. Disease-associated short tandem repeats co-localize with chromatin domain boundaries. Cell175(1), 224–238.e15 (2018).
  • Dumbovic G , ForcalesSV , PeruchoM. Emerging roles of macrosatellite repeats in genome organization and disease development. Epigenetics12(7), 515–526 (2017).
  • Stoccoro A , CoppedèF. Role of epigenetics in Alzheimer’s disease pathogenesis. Neurodegener. Dis. Manag.8(3), 181–193 (2018).
  • Wilczynska A , BushellM. The complexity of miRNA-mediated repression. Cell Death Differ.22(1), 22–33 (2015).
  • Grad LI , RouleauGA , RavitsJ , CashmanNR. Clinical spectrum of amyotrophic lateral sclerosis (ALS). Cold Spring Harb. Perspect. Med.7(8), a024117 (2017).
  • Kolb SJ , KisselJT. Spinal muscular atrophy. Neurol. Clin.33(4), 831–846 (2015).
  • Figueroa-Romero C , HurJ , BenderDEet al. Identification of epigenetically altered genes in sporadic amyotrophic lateral sclerosis. PLoS ONE7, e52672 (2012).
  • Tremolizzo L , MessinaP , ContiEet al. Whole-blood global DNA methylation is increased in amyotrophic lateral sclerosis independently of age of onset. Amyotroph. Lateral Scler. Front. Degener.15, 98–105 (2014).
  • Hamzeiy H , SavaşD , Tuncaet al. Elevated global DNA methylation is not exclusive to amyotrophic lateral sclerosis and is also observed in spinocerebellar ataxia types 1 and 2. Neurodegener. Dis.18(1), 38–48 (2018).
  • Coppedè F , StoccoroA , MoscaLet al. Increase in DNA methylation in patients with amyotrophic lateral sclerosis carriers of not fully penetrant SOD1 mutations. Amyotroph. Lateral Scler. Frontotemporal Degener.19(1-2), 93–101 (2018).
  • Zhang M , XiZ , GhaniMet al. Genetic and epigenetic study of ALS-discordant identical twins with double mutations in SOD1 and ARHGEF28. J. Neurol. Neurosurg. Psychiatry87(11), 1268–1270 (2016).
  • Young PE , KumJew S , BucklandME , PamphlettR , SuterCM. Epigenetic differences between monozygotic twins discordant for amyotrophic lateral sclerosis (ALS) provide clues to disease pathogenesis. PLoS One12(8), e0182638 (2017).
  • Tarr IS , McCannEP , BenyaminBet al. Monozygotic twins and triplets discordant for amyotrophic lateral sclerosis display differential methylation and gene expression. Sci. Rep.9(1), 8254 (2019).
  • Wong M , GertzB , ChestnutBA , MartinLJ. Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS. Front. Cell. Neurosci.7, 279 (2013).
  • Stoccoro A , MoscaL , CarnicelliVet al. Mitochondrial DNA copy number and D-loop region methylation in carriers of amyotrophic lateral sclerosis gene mutations. Epigenomics10(11), 1431–1443 (2018).
  • Xi Z , ZinmanL , MorenoDet al. Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. Am. J. Hum. Genet.92(6), 981–989 (2013).
  • Belzil VV , BauerPO , GendronTF , MurrayME , DicksonD , PetrucelliL. Characterization of DNA hypermethylation in the cerebellum of c9FTD/ALS patients. Brain Res.1584, 15–21. (2014).
  • Gijselinck I , Van MosseveldeS , vander Zee Jet al. The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter. Mol. Psychiatry21(8), 1112–1124 (2016).
  • JM, Yu B , TrentRJ , PamphlettR. A genome-wide analysis of brain DNA methylation identifies new candidate genes for sporadic amyotrophic lateral sclerosis. Amyotroph. Lateral. Scler.10(5-6), 418–429 (2009).
  • Lam L , ChinL , HalderRCet al. Epigenetic changes in T-cell and monocyte signatures and production of neurotoxic cytokines in ALS patients. FASEB J.30(10), 3461–3473 (2016).
  • Rouaux C , JokicN , MbebiC , BoutillierS , LoefflerJP , BoutillierAL. Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J.22(24), 6537–6549 (2003).
  • Pigna E , SimonazziE , SannaKet al. Histone deacetylase 4 protects from denervation and skeletal muscle atrophy in a murine model of amyotrophic lateral sclerosis. EBioMedicine40, 717–732 (2019).
  • Dios AM , BabuS , GranucciEJet al. Class I and II histone deacetylase expression is not altered in human amyotrophic lateral sclerosis: neuropathological and positron emission tomography molecular neuroimaging evidence. Muscle Nerve60(4), 443–452 (2019).
  • Sugai F , YamamotoY , MiyaguchiKet al. Benefit of valproic acid in suppressing disease progression of ALS model mice. Eur. J. Neurosci.20(11), 3179–3183 (2004).
  • Ryu H , SmithK , CameloSIet al. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J. Neurochem.93(5), 1087–1098 (2005).
  • Yoo YE , KoCP. Treatment with trichostatin A initiated after disease onset delays disease progression and increases survival in a mouse model of amyotrophic lateral sclerosis. Exp. Neurol.231(1), 147–59 (2011).
  • Rossaert E , PollariE , JaspersTet al. Restoration of histone acetylation ameliorates disease and metabolic abnormalities in a FUS mouse model. Acta Neuropathol. Commun.7(1), 107 (2019).
  • Kuta R , LarochelleN , FernandezMet al. Depending on the stress, histone deacetylase inhibitors act as heat shock protein co-inducers in motor neurons and potentiate arimoclomol, exerting neuroprotection through multiple mechanisms in ALS models. Cell Stress Chaperones25(1), 173–191 (2020).
  • Boutillier AL , TzeplaeffL , DupuisL. The dark side of HDAC inhibition in ALS. EBioMedicine41, 38–39 (2019).
  • Foggin S , Mesquita-RibeiroR , Dajas-BailadorF , LayfieldR. Biological significance of microRNA biomarkers in ALS–innocent bystanders or disease culprits?Front. Neurol.10, 578 (2019).
  • Joilin G , LeighPN , NewburySF , HafezparastM. An overview of microRNAs as biomarkers of ALS. Front. Neurol.10, 186 (2019).
  • Wang L , ZhangL. Circulating microRNAs as diagnostic biomarkers for motor neuron disease. Front. Neurosci.14, 354 (2020).
  • Hauke J , RiesslandM , LunkeSet al. Survival motor neuron gene 2 silencing by DNA methylation correlates with spinal muscular atrophy disease severity and can be bypassed by histone deacetylase inhibition. Hum. Mol. Genet.18, 304–317 (2009).
  • Cao YY , QuYJ , HeSXet al. Association between SMN2 methylation and disease severity in Chinese children with spinal muscular atrophy. J. Zhejiang Univ. Sci. B.17, 76–82 (2016).
  • Zheleznyakova GY , VoisinS , KiselevAVet al. Genome-wide analysis shows association of epigenetic changes in regulators of Rab and Rho GTPases with spinal muscular atrophy severity. Eur. J. Hum. Genet.21, 988–993 (2013).
  • Zheleznyakova GY , NilssonEK , KiselevAVet al. Methylation levels of SLC23A2 and NCOR2 genes correlate with spinal muscular atrophy severity. PLoS One10, e0121964 (2015).
  • Maretina M , EgorovaA , BaranovV , KiselevA. DYNC1H1 gene methylation correlates with severity of spinal muscular atrophy. Ann. Hum. Genet.83, 73–81 (2019).
  • Mohseni J , Zabidi-HussinZA , SasongkoTH. Histone deacetylase inhibitors as potential treatment for spinal muscular atrophy. Genet. Mol. Biol.36, 299–307 (2013).
  • Brahe C , VitaliT , TizianoFDet al. Phenylbutyrate increases SMN gene expression in spinal muscular atrophy patients. Eur. J. Hum. Genet.13, 256–259 (2005).
  • Piepers S , CobbenJM , SodaarPet al. Quantification of SMN protein in leucocytes from spinal muscular atrophy patients: effects of treatment with valproic acid. J. Neurol. Neurosurg. Psychiatry82, 850–852 (2010).
  • Magri F , VanoliF , CortiS. MiRNA in spinal muscular atrophy pathogenesis and therapy. J. Cell. Mol. Med.22, 755–767 (2018).
  • Bonanno S , MarcuzzoS , MalacarneCet al. Circulating myomiRs as potential biomarkers to monitor response to nusinersen in pediatric SMA patients. Biomedicines8, 21 (2020).
  • Singh RN , SeoJ , SinghNN. RNA in spinal muscular atrophy: therapeutic implications of targeting. Expert Opin. Ther. Targets24(8), 731–743 (2020).
  • Ottesen EW . ISS-N1 makes the first FDA-approved drug for spinal muscular atrophy. Transl. Neurosci.8, 1–6 (2017).
  • Al-Chalabi A , HardimanO , KiernanMC , Chio'A , Rix-BrooksB , vanden Berg LH. Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurol.15, 1182–1194 (2016).
  • Ji AL , ZhangX , ChenWW , HuangWJ. Genetics insight into the amyotrophic lateral sclerosis/frontotemporal dementia spectrum. J. Med. Genet.54, 145–154 (2017).
  • van Rheenen W , ShatunovA , DekkerAMet al. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat. Genet.48, 1043–1048 (2016).
  • Balendra R , IsaacsAM. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat. Rev. Neurol.14(9), 544–558 (2018).
  • Nabais MF , LinT , BenyaminBet al. Significant out-of-sample classification from methylation profile scoring for amyotrophic lateral sclerosis. NPJ Genom. Med.5, 10 (2020).
  • Chestnut BA , ChangQ , PriceA , LesuisseC , WongM , MartinLJ. Epigenetic regulation of motor neuron cell death through DNA methylation. J. Neurosci.31(46), 16619–16636 (2011).
  • Oates N , PamphlettR. An epigenetic analysis of SOD1 and VEGF in ALS. Amyotroph. Lateral Scler.8(2), 83–86 (2007).
  • Morahan JM , YuB , TrentRJ , PamphlettR. Are metallothionein genes silenced in ALS?Toxicol. Lett.168(1), 83–87 (2007).
  • Yang Y , GozenO , VidenskyS , RobinsonMB , RothsteinJD. Epigenetic regulation of neuron-dependent induction of astroglial synaptic protein GLT1. Glia58(3), 277–286 (2010).
  • Xi Z , ZhangM , BruniACet al. The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathol.129, 715–727 (2015).
  • Ng ASL , TanEK. Intermediate C9orf72 alleles in neurological disorders: does size really matter?J. Med. Genet.54(9), 591–597 (2017).
  • Coppedè F . The potential of epigenetic therapies in neurodegenerative diseases. Front. Genet.5, 220 (2014).
  • Zhang YJ , GuoL , GonzalesPKet al. Heterochromatin anomalies and double-stranded RNA accumulation underlie C9orf72 poly(PR) toxicity. Science363, 6428 (2019).
  • Maretina MA , ZheleznyakovaGY , LankoKM , EgorovaAA , BaranovVS , KiselevAV. Molecular factors involved in spinal muscular atrophy pathways as possible disease-modifying candidates. Curr. Genomics19, 339–355 (2018).
  • Harms MB , Ori-McKenneyKM , ScotoMet al. Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy. Neurology78, 1714–1720 (2012).
  • Tsurusaki Y , SaitohS , TomizawaKet al. A DYNC1H1 mutation causes a dominant spinal muscular atrophy with lower extremity predominance. Neurogenetics13, 327–332 (2012).
  • Mohseni J , Al-NajjarBO , WahabHA , Zabidi-HussinZA , SasongkoTH. Transcript, methylation and molecular docking analyses of the effects of HDAC inhibitors, SAHA and dacinostat, on SMN2 expression in fibroblasts of SMA patients. J. Hum. Genet.61, 823–830 (2016).
  • Lai JI , LemanLJ , KuSet al. Cyclic tetrapeptide HDAC inhibitors as potential therapeutics for spinal muscular atrophy: screening with iPSC-derived neuronal cells. Bioorg. Med. Chem. Lett.27, 3289–3293 (2017).
  • Ottesen EW , SinghRN. Characteristics of circular RNAs generated by human survival motor neuron genes. Cell. Signal.73, 109696 (2020).
  • Brusa R , MagriF , BresolinN , ComiGP , CortiS. Noncoding RNAs in Duchenne and Becker muscular dystrophies: role in pathogenesis and future prognostic and therapeutic perspectives. Cell. Mol. Life Sci. doi:10.1007/s00018-020-03537-4 (2020) ( Epub ahead of print).
  • Zaharieva IT , CalissanoM , ScotoMet al. Dystromirs as serum biomarkers for monitoring the disease severity in Duchenne muscular dystrophy. PLoS ONE8, e80263 (2013).
  • Becker S , FlorianA , PatrascuAet al. Identification of cardiomyopathy associated circulating miRNA biomarkers in patients with muscular dystrophy using a complementary cardiovascular magnetic resonance and plasma profiling approach. J. Cardiovasc. Magn. Reson.18, 25 (2016).
  • Trifunov S , Natera-deBenito D , ExpositoEscudero JMet al. Longitudinal study of three microRNAs in Duchenne muscular dystrophy and Becker muscular dystrophy. Front. Neurol.11, 304 (2020).
  • Cacchiarelli D , IncittiT , MartoneJet al. MiR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy. EMBO Rep.12, 136–141 (2012).
  • Greco S , CardinaliB , FalconeG , MartelliF. Circular RNAs in muscle function and disease. Int. J. Mol. Sci.19, 3454 (2018).
  • Legnini I , DiTimoteo G , RossiFet al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell.66, 22–37 (2017).
  • Barbé L , LanniS , López-CastelAet al. CpG methylation, a parent-of-origin effect for maternal-biased transmission of congenital myotonic dystrophy. Am. J. Hum. Genet.100, 488–505 (2017).
  • Steinbach P , GläserD , VogelW , WolfM , SchwemmleS. The DMPK gene of severely affected myotonic dystrophy patients is hypermethylated proximal to the largely expanded CTG repeat. Am. J. Hum. Genet.62, 278–285 (1998).
  • Nakamori M , HamanakaK , ThomasJDet al. Aberrant myokine signaling in congenital myotonic dystrophy. Cell. Rep.21, 1240–1252 (2017).
  • Rizzo M , BeffyP , DelCarratore Ret al. Activation of the interferon type I response rather than autophagy contributes to myogenesis inhibition in congenital DM1 myoblasts. Cell Death Dis.9, 1071 (2018).
  • Santoro M , FontanaL , MasciulloMet al. Expansion size and presence of CCG/CTC/CGG sequence interruptions in the expanded CTG array are independently associated to hypermethylation at the DMPK locus in myotonic dystrophy type 1 (DM1). Biochim. Biophys. Acta1852, 2645–2652 (2015).
  • Légaré C , OverendG , GuaySPet al. DMPK gene DNA methylation levels are associated with muscular and respiratory profiles in DM1. Neurol. Genet.5, e338 (2019).
  • Pegoraro V , CudiaP , BabaA , AngeliniC. MyomiRNAs and myostatin as physical rehabilitation biomarkers for myotonic dystrophy. Neurol. Sci.41(10), 2953–2960 (2020).
  • López Castel A , OverbySJ , ArteroR. MicroRNA-based therapeutic perspectives in myotonic dystrophy. Int. J. Mol. Sci.20, 5600 (2019).
  • Cerro-Herreros E , Sabater-ArcisM , Fernandez-CostaJMet al. MiR-23b and miR-218 silencing increase muscleblind-like expression and alleviate myotonic dystrophy phenotypes in mammalian models. Nat. Commun.9, 2482 (2018).
  • Voellenkle C , PerfettiA , CarraraMet al. Dysregulation of circular RNAs in myotonic dystrophy type 1. Int. J. Mol. Sci.20, 1938 (2019).
  • Czubak K , TaylorK , PiaseckaAet al. Global increase in circular RNA levels in myotonic dystrophy. Front. Genet.10, 649 (2019).
  • Hartweck LM , AndersonLJ , LemmersRJet al. A focal domain of extreme demethylation within D4Z4 in FSHD2. Neurology80(4), 392–399 (2013).
  • Jones TI , YanC , SappPCet al. Identifying diagnostic DNA methylation profiles for facioscapulohumeral muscular dystrophy in blood and saliva using bisulfite sequencing. Clin. Epigenet.6, 23 (2014).
  • Gaillard MC , RocheS , DionCet al. Differential DNA methylation of the D4Z4 repeat in patients with FSHD and asymptomatic carriers. Neurology83(8), 733–742 (2014).
  • Lemmers RJ , GoemanJJ , vander Vliet PJet al. Inter-individual differences in CpG methylation at D4Z4 correlate with clinical variability in FSHD1 and FSHD2. Hum. Mol. Genet.24(3), 659–669 (2015).
  • Ottaviani A , Schluth-BolardC , Rival-GervierSet al. Identification of a perinuclear positioning element in human subtelomeres that requires A-type lamins and CTCF. EMBO J.28(16), 2428–2436 (2009).
  • Ottaviani A , Schluth-BolardC , GilsonE , MagdinierF. D4Z4 as a prototype of CTCF and lamins-dependent insulator in human cells. Nucleus1(1), 30–36 (2010).
  • Robin JD , LudlowAT , BattenKet al. SORBS2 transcription is activated by telomere position effect-over long distance upon telomere shortening in muscle cells from patients with facioscapulohumeral dystrophy. Genome Res.25(12), 1781–1790 (2015).
  • Bodega B , RamirezGD , GrasserFet al. Remodeling of the chromatin structure of the facioscapulohumeral muscular dystrophy (FSHD) locus and upregulation of FSHD-related gene 1 (FRG1) expression during human myogenic differentiation. BMC Biol.7, 41 (2009).
  • Pirozhkova I , PetrovA , DmitrievP , LaoudjD , LipinskiM , VassetzkyY. A functional role for 4qA/B in the structural rearrangement of the 4q35 region and in the regulation of FRG1 and ANT1 in facioscapulohumeral dystrophy. PLoS One3(10), e3389 (2008).
  • Petrov A , PirozhkovaI , CarnacG , LaoudjD , LipinskiM , VassetzkyYS. Chromatin loop domain organization within the 4q35 locus in facioscapulohumeral dystrophy patients versus normal human myoblasts. Proc. Natl Acad. Sci. U. S. A.103(18), 6982–6987 (2006).
  • Gaillard MC , BroucqsaultN , MorereJet al. Analysis of the 4q35 chromatin organization reveals distinct long-range interactions in patients affected with facio-scapulo-humeral dystrophy. Sci. Rep.9(1), 10327 (2019).
  • Cortesi A , PesantM , SinhaSet al. 4q-D4Z4 chromatin architecture regulates the transcription of muscle atrophic genes in facioscapulohumeral muscular dystrophy. Genome Res.29(6), 883–895 (2019).
  • Lim JW , WongCJ , YaoZet al. Small noncoding RNAs in FSHD2 muscle cells reveal both DUX4- and SMCHD1-specific signatures. Hum. Mol. Genet.27, 2644–2657 (2018).
  • Portilho DM , AlvesMR , KratassioukGet al. MiRNA expression in control and FSHD fetal human muscle biopsies. PLoS ONE10, e0116853 (2015).
  • Datta N , GhoshPS. Update on muscular dystrophies with focus on novel treatments and biomarkers. Curr. Neurol. Neurosci. Rep.20, 14 (2020).
  • Yoshioka M , YorifujiT , MituyoshiI. Skewed X inactivation in manifesting carriers of Duchenne muscular dystrophy. Clin. Genet.53, 102–107 (1998).
  • Richards CS , WatkinsSC , HoffmanEPet al. Skewed X inactivation in a female MZ twin results in Duchenne muscular dystrophy. Am. J. Hum. Genet.46, 672–681 (1990).
  • Hrach HC , MangoneM. MiRNA profiling for early detection and treatment of Duchenne muscular dystrophy. Int. J. Mol. Sci.20, 4638 (2019).
  • Johnson NE . Myotonic muscular dystrophies. Continuum (Minneap. Minn.)25, 1682–1695 (2019).
  • Lanni S , PearsonCE. Molecular genetics of congenital myotonic dystrophy. Neurobiol. Dis.132, 104533 (2019).
  • Otten AD , TapscottSJ. Triplet repeat expansion in myotonic dystrophy alters the adjacent chromatin structure. Proc. Natl Acad. Sci. U.S.A.92, 5465–5469 (1995).
  • Castel AL , NakamoriM , ToméSet al. Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues. Hum. Mol. Genet.20, 1–15 (2011).
  • Brouwer JR , HuguetA , NicoleA , MunnichA , GourdonG. Transcriptionally repressive chromatin remodelling and CpG methylation in the presence of expanded CTG-repeats at the DM1 locus. J. Nucleic Acids2013, 567435 (2013).
  • Koutsoulidou A , KyriakidesTC , PapadimasGKet al. Elevated muscle-specific miRNAs in serum of myotonic dystrophy patients relate to muscle disease progress. PLoS One10, e0125341.2015 (2015).
  • Sabater-Arcis M , BargielaA , FurlingD , ArteroR. MiR-7 restores phenotypes in myotonic dystrophy muscle cells by repressing hyperactivated autophagy. Mol. Ther. Nucleic Acids19, 278–292 (2020).
  • Greco A , GoossensR , van EngelenB , vander Maarel SM. Consequences of epigenetic derepression in facioscapulohumeral muscular dystrophy. Clin. Genet.97, 799–814 (2020).
  • Himeda CL , JonesPL. The genetics and epigenetics of facioscapulohumeral muscular dystrophy. Annu. Rev. Genomics Hum. Genet.20, 265–291 (2019).
  • Preston MK , TawilR , WangLH. Facioscapulohumeral muscular dystrophy. In: AdamMP, ArdingerHH, PagonRAet al.et al. ( Eds). GeneReviews®WA, USAUniversity of Washington, Seattle; 1993–2020. 1999 Mar 8 ( updated2020 Feb 6).
  • Himeda CL , JonesTI , VirbasiusCM , ZhuLJ , GreenMR , JonesPL. Identification of epigenetic regulators of DUX4-fl for targeted therapy of facioscapulohumeral muscular dystrophy. Mol. Ther.26, 1797–807 (2018).
  • Himeda CL , JonesTI , JonesPL. CRISPR/dCas9-mediated transcriptional inhibition ameliorates the epigenetic dysregulation at D4Z4 and represses DUX4-fl in FSH muscular dystrophy. Mol. Ther.24, 527–535 (2016).
  • Fang TK , YanCJ , DuJ. TLA-4 methylation regulates the pathogenesis of myasthenia gravis and the expression of related cytokines. Medicine (Baltimore)97, e0620 (2018).
  • Coppedè F , StoccoroA , NicolìVet al. Investigation of GHSR methylation levels in thymomas from patients with myasthenia gravis. Gene752, 144774 (2020).
  • Serfecz J , BazickH , AlSalihi MOet al. Downregulation of the human peripheral myelin protein 22 gene by miR-29a in cellular models of Charcot-Marie-Tooth disease. Gene Ther.26, 455–464 (2019).
  • de Anda-Jáuregui G , McGregorBA , GuoK , HurJ. A network pharmacology approach for the identification of common mechanisms of drug-induced peripheral neuropathy. CPT Pharmacometrics Syst. Pharmacol.8, 211–219 (2019).
  • Zhang HH , HanX , WangMet al. The association between genomic DNA methylation and diabetic peripheral neuropathy in patients with type 2 diabetes mellitus. J. Diabetes Res.2019, 2494057 (2019).
  • Guo K , ElzingaS , EidSet al. Genome-wide DNA methylation profiling of human diabetic peripheral neuropathy in subjects with type 2 diabetes mellitus. Epigenetics14, 766–779 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.