161
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

DNA Methylation at the DMPK Gene Locus is Associated with Cognitive Functions in Myotonic Dystrophy Type 1

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , , , & show all
Pages 2051-2064 | Received 17 Aug 2020, Accepted 18 Oct 2020, Published online: 10 Dec 2020

References

  • De Antonio M , DoganC , HamrounDet al. Unravelling the myotonic dystrophy type 1 clinical spectrum: a systematic registry-based study with implications for disease classification. Rev. Neurol. (Paris)172(10), 572–580 (2016).
  • Fujino H , ShingakiH , SuwazonoSet al. Cognitive impairment and quality of life in patients with myotonic dystrophy type 1. Muscle Nerve57(5), 742–748 (2018).
  • Van Heugten C , MeulemanS , HellebrekersD , Kruitwagen-vanReenen E , Visser-MeilyJ. Participation and the role of neuropsychological functioning in myotonic dystrophy type 1. J. Neuromuscul. Dis.5(2), 205–214 (2018).
  • Okkersen K , BuskesM , GroenewoudJet al. The cognitive profile of myotonic dystrophy type 1: a systematic review and meta-analysis. Cortex95, 143–155 (2017).
  • Peric S , RakocevicStojanovic V , MandicStojmenovic Get al. Clusters of cognitive impairment among different phenotypes of myotonic dystrophy type 1 and type 2. Neurol. Sci. Milano38(3), 415–423 (2017).
  • Wozniak JR , MuellerBA , BellCJ , MuetzelRL , LimKO , DayJW. Diffusion tensor imaging reveals widespread white matter abnormalities in children and adolescents with myotonic dystrophy type 1. J. Neurol.260(4), 1122–1131 (2013).
  • van Dorst M , OkkersenK , KesselsRPCet al. Structural white matter networks in myotonic dystrophy type 1. NeuroImage Clin.21, 101615 (2019).
  • Gallais B , GagnonC , MathieuJ , RicherL. Cognitive decline over time in adults with myotonic dystrophy type 1: a 9-year longitudinal study. Neuromuscul. Disord.27(1), 61–72 (2017).
  • Caso F , AgostaF , PericSet al. Cognitive impairment in myotonic dystrophy type 1 is associated with white matter damage. PLoS One9(8), e104697 (2014).
  • Ashizawa T . Myotonic dystrophy as a brain disorder. Arch. Neurol.55(3), 291–293 (1998).
  • Thornton CA . Myotonic dystrophy. Neurol. Clin.32(3), 705–719 (2014).
  • Winblad S , LindbergC , HansenS. Cognitive deficits and CTG repeat expansion size in classical myotonic dystrophy type 1 (DM1). Behav. Brain Funct.2(1), 16 (2006).
  • Baldanzi S , CecchiP , FabbriSet al. Relationship between neuropsychological impairment and grey and white matter changes in adult-onset myotonic dystrophy type 1. NeuroImage Clin.12, 190–197 (2016).
  • Hamilton MJ , McLeanJ , CummingSet al. Outcome measures for central nervous system evaluation in myotonic dystrophy type 1 may be confounded by deficits in motor function or insight. Front. Neurol.9, 780 (2018).
  • Harley HG , RundleSA , MacMillanJCet al. Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy. Am. J. Hum. Genet.52(6), 1164–1174 (1993).
  • Brook JD , McCurrachME , HarleyHGet al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell68(4), 799–808 (1992).
  • Fu YH , PizzutiA , FenwickRGet al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science255(5049), 1256–1258 (1992).
  • Mahadevan M , TsilfidisC , SabourinLet al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science255(5049), 1253–1255 (1992).
  • Sistiaga A , UrretaI , JodarMet al. Cognitive/personality pattern and triplet expansion size in adult myotonic dystrophy type 1 (DM1): CTG repeats, cognition and personality in DM1. Psychol. Med.40(3), 487–495 (2010).
  • Overend G , LégaréC , MathieuJ , BouchardL , GagnonC , MoncktonDG. Allele length of the DMPK CTG repeat is a predictor of progressive myotonic dystrophy type 1 phenotypes. Hum. Mol. Genet.28(13), 2245–2254 (2019).
  • Cumming SA , HamiltonMJ , RobbYet al. De novo repeat interruptions are associated with reduced somatic instability and mild or absent clinical features in myotonic dystrophy type 1. Eur. J. Hum. Genet. EJHG26(11), 1635–1647 (2018).
  • Morales F , CoutoJM , HighamCFet al. Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity. Hum. Mol. Genet.21(16), 3558–3567 (2012).
  • Légaré C , OverendG , GuayS-Pet al. DMPK gene DNA methylation levels are associated with muscular and respiratory profiles in DM1. Neurol. Genet.5(3), e338 (2019).
  • He F , ToddPK. Epigenetic mechanisms in repeat expansion disorders. Semin. Neurol.31(5), 470–483 (2011).
  • Buckley L , LaceyM , EhrlichM. Epigenetics of the myotonic dystrophy-associated DMPK gene neighborhood. Epigenomics8(1), 13–31 (2016).
  • Steinbach P , GläserD , VogelW , WolfM , SchwemmleS. The DMPK gene of severely affected myotonic dystrophy patients is hypermethylated proximal to the largely expanded CTG repeat. Am. J. Hum. Genet.62(2), 278–285 (1998).
  • Filippova GN , ThienesCP , PennBHet al. CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nat. Genet.28(4), 335–343 (2001).
  • Shaw DJ , ChaudharyS , RundleSAet al. A study of DNA methylation in myotonic dystrophy. J. Med. Genet.30(3), 189–192 (1993).
  • Barbé L , LanniS , López-CastelAet al. CpG methylation, a parent-of-origin effect for maternal-biased transmission of congenital myotonic dystrophy. Am. J. Hum. Genet.100(3), 488–505 (2017).
  • Brouwer JR , HuguetA , NicoleA , MunnichA , GourdonG. Transcriptionally repressive chromatin remodelling and CpG methylation in the presence of expanded CTG-repeats at the DM1 Locus. J. Nucleic Acids2013, 567435 (2013).
  • López Castel A , NakamoriM , ToméSet al. Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues. Hum. Mol. Genet.20(1), 1–15 (2011).
  • Santoro M , FontanaL , MasciulloMet al. Expansion size and presence of CCG/CTC/CGG sequence interruptions in the expanded CTG array are independently associated to hypermethylation at the DMPK locus in myotonic dystrophy type 1 (DM1). Biochim. Biophys. Acta1852(12), 2645–2652 (2015).
  • Spits C , SenecaS , HilvenP , LiebaersI , SermonK. Methylation of the CpG sites in the myotonic dystrophy locus does not correlate with CTG expansion size or with the congenital form of the disease. J. Med. Genet.47(10), 700–703 (2010).
  • Yanovsky-Dagan S , AvitzourM , AltarescuGet al. Uncovering the role of hypermethylation by CTG expansion in myotonic dystrophy type 1 using mutant human embryonic stem cells. Stem Cell Rep.5(2), 221–231 (2015).
  • Moore LD , LeT , FanG. DNA methylation and its basic function. Neuropsychopharmacology38(1), 23–38 (2013).
  • Portela A , EstellerM. Epigenetic modifications and human disease. Nat. Biotechnol.28(10), 1057–1068 (2010).
  • Sato S , NakamuraM , ChoDH , TapscottSJ , OzakiH , KawakamiK. Identification of transcriptional targets for Six5: implication for the pathogenesis of myotonic dystrophy type 1. Hum. Mol. Genet.11(9), 1045–1058 (2002).
  • Gagnon C , PetitclercÉ , KierkegaardM , MathieuJ , DuchesneÉ , HébertLJ. A 9-year follow-up study of quantitative muscle strength changes in myotonic dystrophy type 1. J. Neurol.265(7), 1698–1705 (2018).
  • Raymond K , LevasseurM , MathieuJ , GagnonC. Progressive decline in daily and social activities: a 9-year longitudinal study of participation in myotonic dystrophy type 1. Arch. Phys. Med. Rehabil.100(9), 1629–1639 (2019).
  • Jaeger J . Digit symbol substitution test. J. Clin. Psychopharmacol.38(5), 513–519 (2018).
  • Woods SP , DelisDC , ScottJC , KramerJH , HoldnackJA. The California Verbal Learning Test – Second Edition: test-retest reliability, practice effects, and reliable change indices for the standard and alternate forms. Arch. Clin. Neuropsychol.21(5), 413–420 (2006).
  • Delis DC , FreelandJ , KramerJH , KaplanE. Integrating clinical assessment with cognitive neuroscience: construct validation of the california verbal learning test. J. Consult. Clin. Psychol.56(1), 123–130 (1988).
  • Ruff RM , NiemannH , AllenCC , FarrowCE , WylieT. The Ruff 2 and 7 selective attention test: a neuropsychological application. Percept. Mot. Skills75(3 Pt 2), 1311–1319 (1992).
  • Marsh S . Pyrosequencing applications. Methods Mol. Biol. Clifton NJ373, 15–24 (2007).
  • Monckton DG , WongLJ , AshizawaT , CaskeyCT. Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses. Hum. Mol. Genet.4(1), 1–8 (1995).
  • Smith CA , GutmannL. Myotonic dystrophy type 1 management and therapeutics. Curr. Treat. Options Neurol.18(12), 52 (2016).
  • Bosco G , DiamantiS , MeolaG. Workshop report: consensus on biomarkers of cerebral involvement in myotonic dystrophy, 2–3 December 2014, Milan, Italy. Neuromuscul. Disord.25(10), 813–823 (2015).
  • Gallais B , MontreuilM , GargiuloM , EymardB , GagnonC , LabergeL. Prevalence and correlates of apathy in myotonic dystrophy type 1. BMC Neurol.15, 148 (2015).
  • Cumming SA , Jimenez-MorenoC , OkkersenKet al. Genetic determinants of disease severity in the myotonic dystrophy type 1 OPTIMISTIC cohort. Neurology93(10), e995–e1009 (2019).
  • Winblad S , SamuelssonL , LindbergC , MeolaG. Cognition in myotonic dystrophy type 1: a 5-year follow-up study. Eur. J. Neurol.23(9), 1471–1476 (2016).
  • Chouliaras L , PishvaE , HaapakoskiRet al. Peripheral DNA methylation, cognitive decline and brain aging: pilot findings from the Whitehall II imaging study. Epigenomics10(5), 585–595 (2018).
  • Mateos-Aierdi AJ , GoicoecheaM , AiastuiAet al. Muscle wasting in myotonic dystrophies: a model of premature aging. Front. Aging Neurosci.7, 125 (2015).
  • Hildonen M , KnakKL , DunøM , VissingJ , TümerZ. Stable longitudinal methylation levels at the CpG sites flanking the CTG repeat of DMPK in patients with myotonic dystrophy type 1. Genes11(8), 936 (2020).
  • Ballester-Lopez A , KoehorstE , AlmendroteMet al. A DM1 family with interruptions associated with atypical symptoms and late onset but not with a milder phenotype. Hum. Mutat.41(2), 420–431 (2019).
  • K N , CeP. CpG methylation modifies the genetic stability of cloned repeat sequences. Genome Res.12(8), 1246–1256 (2002).
  • Santoro M , MasciulloM , SilvestriG , NovelliG , BottaA. Myotonic dystrophy type 1: role of CCG, CTC and CGG interruptions within DMPK alleles in the pathogenesis and molecular diagnosis. Clin. Genet.92(4), 355–364 (2017).
  • Kawakami K , SatoS , OzakiH , IkedaK. Six family genes – structure and function as transcription factors and their roles in development. BioEssays22(7), 616–626 (2000).
  • Larkin K , FardaeiM. Myotonic dystrophy – a multigene disorder. Brain Res. Bull.56(3), 389–395 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.