634
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Transcriptome-Wide N6-Methyladenosine Methylation Landscape of Coronary Artery Disease

ORCID Icon, , , , , , , , & show all
Pages 793-808 | Received 09 Oct 2020, Accepted 29 Mar 2021, Published online: 20 Apr 2021

References

  • Virani SS , AlonsoA , BenjaminEJet al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation141(9), e139–e596 (2020).
  • Elia L , CondorelliG. The involvement of epigenetics in vascular disease development. Int. J. Biochem. Cell Biol.107, 27–31 (2019).
  • De La Rocha C , ZainaS , LundG. Is any cardiovascular disease-specific DNA methylation biomarker within reach?Curr. Atheroscler. Rep.22(10), 62 (2020).
  • He X , LianZ , YangYet al. Long non-coding RNA PEBP1P2 suppresses proliferative VSMCs phenotypic switching and proliferation in atherosclerosis. Mol. Ther. Nucleic Acids22, 84–98 (2020).
  • Josefs T , BoonRA. The long non-coding road to atherosclerosis. Curr. Atheroscler. Rep.22(10), 55 (2020).
  • Prestes PR , MaierMC , WoodsBA , CharcharFJ. A guide to the short, long and circular RNAs in hypertension and cardiovascular disease. Int. J. Mol. Sci.21(10), 3666 (2020).
  • Navarro E , MallenA , CruzadoJM , TorrasJ , HuesoM. Unveiling ncRNA regulatory axes in atherosclerosis progression. Clin. Transl. Med.9(1), 5 (2020).
  • R Desrosiers KF , RottmanF. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl Acad. Sci. USA71(10), 3971–3975 (1974).
  • Davalos V , BlancoS , EstellerM. SnapShot: messenger RNA modifications. Cell174(2), 498–498e491 (2018).
  • Zheng N , SuJ , HuH , WangJ , ChenX. Research progress of N6-methyladenosine in the cardiovascular system. Med. Sci. Monit.26, e921742 (2020).
  • Zhang C , WangY , PengY , XuH , ZhouX. METTL3 regulates inflammatory pain by modulating m(6)A-dependent pri-miR-365-3p processing. FASEB J.34(1), 122–132 (2020).
  • He L , LiH , WuA , PengY , ShuG , YinG. Functions of N6-methyladenosine and its role in cancer. Mol. Cancer18(1), 176 (2019).
  • Wang X , LuZ , GomezAet al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature505(7481), 117–120 (2014).
  • Berulava T , BuchholzE , ElerdashviliVet al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur. J. Heart Fail.22(1), 54–66 (2020).
  • Dai D , WangH , ZhuL , JinH , WangX. N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis.9(2), 124 (2018).
  • Mathiyalagan P , AdamiakM , MayourianJet al. FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation139(4), 518–532 (2019).
  • Dorn LE , LasmanL , ChenJet al. The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation139(4), 533–545 (2019).
  • Mo XB , LeiSF , ZhangYH , ZhangH. Detection of m(6)A-associated SNPs as potential functional variants for coronary artery disease. Epigenomics10(10), 1279–1287 (2018).
  • Gustavsson J , MehligK , LeanderKet al. FTO genotype, physical activity, and coronary heart disease risk in Swedish men and women. Circ. Cardiovasc. Genet.7(2), 171–177 (2014).
  • Li L , WangL , LiHet al. Characterization of LncRNA expression profile and identification of novel LncRNA biomarkers to diagnose coronary artery disease. Atherosclerosis275, 359–367 (2018).
  • Wang Y , SunJ , LinZet al. m(6)A mRNA methylation controls functional maturation in neonatal murine beta-cells. Diabetes69(8), 1708–1722 (2020).
  • Alexa A , RahnenfuhrerJ , LengauerT. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics22(13), 1600–1607 (2006).
  • Zhang Z , WangQ , ZhangMet al. Comprehensive analysis of the transcriptome-wide m6A methylome in colorectal cancer by MeRIP sequencing. Epigenetics16(4), 425–435 (2021) .
  • Erdmann J , KesslerT , MunozVenegas L , SchunkertH. A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc. Res.114(9), 1241–1257 (2018).
  • Ha EE , Van CampAG , BauerRC. Genetics-driven discovery of novel regulators of lipid metabolism. Curr. Opin. Lipidol.30(3), 157–164 (2019).
  • Quiles-Jimenez A , GregersenI , MittelstedtLeal De Sousa Met al. N6-methyladenosine in RNA of atherosclerotic plaques: an epitranscriptomic signature of human carotid atherosclerosis. Biochem. Biophys. Res. Commun.533(4), 631–637 (2020).
  • Huang H , WengH , ChenJ. m(6)A Modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell37(3), 270–288 (2020).
  • Ridker PM . Anticytokine agents: targeting interleukin signaling pathways for the treatment of atherothrombosis. Circ. Res.124(3), 437–450 (2019).
  • Keeley EC , MehradB , StrieterRM. Chemokines as mediators of neovascularization. Arterioscler. Thromb. Vasc. Biol.28(11), 1928–1936 (2008).
  • Qin Y , MaoW , PanLet al. Inhibitory effect of recombinant human CXCL8(3-72)K11R/G31P on atherosclerotic plaques in a mouse model of atherosclerosis. Immunopharmacol. Immunotoxicol.41(3), 446–454 (2019).
  • Doring Y , NoelsH , VanDer Vorst EPCet al. Vascular CXCR4 limits atherosclerosis by maintaining arterial integrity: evidence from mouse and human studies. Circulation136(4), 388–403 (2017).
  • Doring Y , JansenY , CimenIet al. B-cell-specific CXCR4 protects against atherosclerosis development and increases plasma IgM levels. Circ. Res.126(6), 787–788 (2020).
  • Inouye M , RipattiS , KettunenJet al. Novel loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis. PLoS Genet.8(8), e1002907 (2012).
  • Malik R , DauT , GonikMet al. Common coding variant in SERPINA1 increases the risk for large artery stroke. Proc. Natl Acad. Sci. USA114(14), 3613–3618 (2017).
  • Fahndrich S , BiertzF , KarchAet al. Cardiovascular risk in patients with alpha-1-antitrypsin deficiency. Respir. Res.18(1), 171 (2017).
  • Wang X , ZhaoBS , RoundtreeIAet al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell161(6), 1388–1399 (2015).
  • Luo GZ , MacqueenA , ZhengGet al. Unique features of the m6A methylome in Arabidopsis thaliana. Nat. Commun.5, 5630 (2014).
  • Qing H , LiuY , ZhaoYet al. Deficiency of the NR4A orphan nuclear receptor NOR1 in hematopoietic stem cells accelerates atherosclerosis. Stem Cells32(9), 2419–2429 (2014).
  • Calvayrac O , Rodriguez-CalvoR , Marti-PamiesIet al. NOR-1 modulates the inflammatory response of vascular smooth muscle cells by preventing NFkappaB activation. J. Mol. Cell. Cardiol.80, 34–44 (2015).
  • Johnston JM , AngyalA , BauerRCet al. Myeloid Tribbles 1 induces early atherosclerosis via enhanced foam cell expansion. Sci. Adv.5(10), eaax9183 (2019).
  • Zhang G , SunH , ZhangYet al. Characterization of dysregulated lncRNA-mRNA network based on ceRNA hypothesis to reveal the occurrence and recurrence of myocardial infarction. Cell Death Discov.4, 35 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.