129
Views
0
CrossRef citations to date
0
Altmetric
Research Article

CircRNA Profiling Identifies circRNF180 as a Tumor Suppressor in Hepatocellular Carcinoma

ORCID Icon, ORCID Icon, , , , , , & show all
Pages 513-530 | Received 15 Dec 2020, Accepted 04 Feb 2021, Published online: 08 Mar 2021

References

  • Bray F , FerlayJ , SoerjomataramIet al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.68(6), 394–424 (2018).
  • Yang JD , HainautP , GoresGJet al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol.16(10), 589–604 (2019).
  • Fujiwara N , FriedmanSL , GoossensNet al. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J. Hepatol.68(3), 526–549 (2018).
  • Anstee QM , ReevesHL , KotsilitiEet al. From NASH to HCC: current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol.16(7), 411–428 (2019).
  • Memczak S , JensM , ElefsiniotiAet al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature495(7441), 333–338 (2013).
  • Chen LL . The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol.17(4), 205–211 (2016).
  • Arnaiz E , SoleC , ManterolaLet al. CircRNAs and cancer: biomarkers and master regulators. Semin. Cancer Biol.58, 90–99 (2019).
  • Yu J , XuQG , WangZGet al. Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. J. Hepatol.68(6), 1214–1227 (2018).
  • Han D , LiJ , WangHet al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology66(4), 1151–1164 (2017).
  • Wang L , LongH , ZhengQet al. Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression. Mol. Cancer18(1), 119 (2019).
  • Hu ZQ , ZhouSL , LiJet al. Circular RNA sequencing identifies circASAP1 as a key regulator in hepatocellular carcinoma metastasis. Hepatology72(3), 906–922 (2020).
  • Li Q , CaoJ , RongMet al. Analysis of cancer incidence and mortality in Guangxi cancer registration areas, 2016. Chin. J. Oncol. Prev. Treat.12(1), 44–51 (2020).
  • Gao Y , WangJ , ZhaoF. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol.16(1), 4 (2015).
  • Wang L , FengZ , WangXet al. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics26(1), 136–138 (2010).
  • Mo M , LiuS , MaXet al. A liver-specific lncRNA, FAM99B, suppresses hepatocellular carcinoma progression through inhibition of cell proliferation, migration, and invasion. J. Cancer Res. Clin. Oncol.145(8), 2027–2038 (2019).
  • Huang DW , ShermanBT , TanQet al. DAVID Bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res.35, W169–W175 (2007).
  • Xia S , FengJ , ChenKet al. CSCD: a database for cancer-specific circular RNAs. Nucleic Acids Res.46(D1), D925–D929 (2018).
  • Liu M , WangQ , ShenJet al. CircBank: a comprehensive database for circRNA with standard nomenclature. RNA Biol.16(7), 899–905 (2019).
  • Dudekula DB , PandaAC , GrammatikakisIet al. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol.13(1), 34–42 (2016).
  • Vlachos IS , ZagganasK , ParaskevopoulouMDet al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res.43(W1), W460–W466 (2015).
  • Li JH , LiuS , ZhouHet al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res.42, D92–D97 (2014).
  • Dweep H , StichtC , PandeyPet al. miRWalk – database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J. Biomed. Inform.44(5), 839–847 (2011).
  • Salzman J . Circular RNA expression: its potential regulation and function. Trends Genet.32(5), 309–316 (2016).
  • Kristensen LS , HansenTB , VenøMTet al. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene37(5), 555–565 (2018).
  • Li Y , ZhengF , XiaoXet al. CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep.18(9), 1646–1659 (2017).
  • Xu H , WangC , SongHet al. RNA-seq profiling of circular RNAs in human colorectal cancer liver metastasis and the potential biomarkers. Mol. Cancer18(1), 8 (2019).
  • Mokdad AA , SingalAG , MarreroJAet al. Vascular invasion and metastasis is predictive of outcome in Barcelona Clinic Liver Cancer stage C hepatocellular carcinoma. J. Natl Compr. Cancer Netw.15(2), 197–204 (2017).
  • Rodríguez-Perálvarez M , LuongTV , AndreanaLet al. A systematic review of microvascular invasion in hepatocellular carcinoma: diagnostic and prognostic variability. Ann. Surg. Oncol.20(1), 325–339 (2013).
  • Mazzaferro V , LlovetJM , MiceliRet al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol.10(1), 35–43 (2009).
  • Pommergaard HC , RostvedAA , AdamRet al. Vascular invasion and survival after liver transplantation for hepatocellular carcinoma: a study from the European Liver Transplant Registry. HPB (Oxford)20(8), 768–775 (2018).
  • Yuan SX , YangF , YangYet al. Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients’ poor recurrence-free survival after hepatectomy. Hepatology56(6), 2231–2241 (2012).
  • Zhou K , FountzilasC. Outcomes and quality of life of systemic therapy in advanced hepatocellular carcinoma. Cancers11(6), 861 (2019).
  • Lu Q , LiJ , CaoHet al. Comparison of diagnostic accuracy of midkine and AFP for detecting hepatocellular carcinoma: a systematic review and meta-analysis. Biosci. Rep.40(3), BSR20192424 (2020).
  • Jeck WR , SharplessNE. Detecting and characterizing circular RNAs. Nat. Biotechnol.32(5), 453–461 (2014).
  • Li Z , ZhouY , YangGet al. Using circular RNA SMARCA5 as a potential novel biomarker for hepatocellular carcinoma. Clin. Chim. Acta492, 37–44 (2019).
  • Yu J , DingWB , WangMCet al. Plasma circular RNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma: a large-scale, multicenter study. Int. J. Cancer146(6), 1754–1763 (2020).
  • Kristensen LS , AndersenMS , StagstedLVWet al. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet.20(11), 675–691 (2019).
  • Dambal S , ShahM , MihelichBet al. The microRNA-183 cluster: the family that plays together stays together. Nucleic Acids Res.43(15), 7173–7188 (2015).
  • Cao MQ , YouAB , ZhuXDet al. miR-182-5p promotes hepatocellular carcinoma progression by repressing FOXO3a. J. Hematol. Oncol.11(1), 12 (2018).
  • Leung WK , HeM , ChanAWet al. Wnt/beta-catenin activates miR-183/96/182 expression in hepatocellular carcinoma that promotes cell invasion. Cancer Lett.362(1), 97–105 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.