217
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identification of Circular RNA Expression Profiles and Potential Biomarkers for Intracerebral Hemorrhage

ORCID Icon, , , ORCID Icon, ORCID Icon, , , , , , , & ORCID Icon show all
Pages 379-395 | Received 29 Nov 2020, Accepted 11 Jan 2021, Published online: 28 Jan 2021

References

  • Collaborators GBDS . Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol.18(5), 439–458 (2019).
  • Feigin VL , RothGA , NaghaviMet al. Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol.15(9), 913–924 (2016).
  • Benjamin EJ , BlahaMJ , ChiuveSEet al. Heart disease and stroke statistics – 2017 update: a report from the American Heart Association. Circulation135(10), e146–e603 (2017).
  • Qureshi AI , MendelowAD , HanleyDF. Intracerebral haemorrhage. Lancet373(9675), 1632–1644 (2009).
  • Wang W , JiangB , SunHet al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480,687 adults. Circulation135(8), 759–771 (2017).
  • Xi G , KeepRF , HoffJT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol.5(1), 53–63 (2006).
  • Ariesen MJ , ClausSP , RinkelGJ , AlgraA. Risk factors for intracerebral hemorrhage in the general population: a systematic review. Stroke34(8), 2060–2065 (2003).
  • Hankey GJ . Stroke. Lancet389(10069), 641–654 (2017).
  • Lindgren A . Stroke genetics: a review and update. J. Stroke16(3), 114–123 (2014).
  • Tuttolomondo A , PintoA. Epigenomics in acute cerebrovascular diseases. Epigenomics12(6), 471–474 (2020).
  • Kim JM , MoonJ , YuJSet al. Altered long noncoding RNA profile after intracerebral hemorrhage. Ann. Clin. Transl. Neurol.6(10), 2014–2025 (2019).
  • Li L , WangP , ZhaoH , LuoY. Noncoding RNAs and intracerebral hemorrhage. CNS Neurol. Disord. Drug Targets18(3), 205–211 (2019).
  • Cheng X , AnderBP , JicklingGCet al. MicroRNA and their target mRNAs change expression in whole blood of patients after intracerebral hemorrhage. J. Cereb. Blood Flow Metab.40(4), 775–786 (2020).
  • Kristensen LS , AndersenMS , StagstedLVW , EbbesenKK , HansenTB , KjemsJ. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet.20(11), 675–691 (2019).
  • Jeck WR , SharplessNE. Detecting and characterizing circular RNAs. Nat. Biotechnol.32(5), 453–461 (2014).
  • Zhang Z , YangT , XiaoJ. Circular RNAs: promising biomarkers for human diseases. EBioMedicine34, 267–274 (2018).
  • Zhao T , ZhengY , HaoDet al. Blood circRNAs as biomarkers for the diagnosis of community-acquired pneumonia. J. Cell. Biochem.120(10), 16483–16494 (2019).
  • Zhao Z , LiX , JianD , HaoP , RaoL , LiM. Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus. Acta Diabetol.54(3), 237–245 (2017).
  • Hu X , AoJ , LiX , ZhangH , WuJ , ChengW. Competing endogenous RNA expression profiling in pre-eclampsia identifies hsa_circ_0036877 as a potential novel blood biomarker for early pre-eclampsia. Clin. Epigenetics10, 48 (2018).
  • Wang L , ShenC , WangYet al. Identification of circular RNA Hsa_circ_0001879 and Hsa_circ_0004104 as novel biomarkers for coronary artery disease. Atherosclerosis286, 88–96 (2019).
  • Arnaiz E , SoleC , ManterolaL , IparraguirreL , OtaeguiD , LawrieCH. CircRNAs and cancer: biomarkers and master regulators. Semin. Cancer Biol.58, 90–99 (2019).
  • Ostolaza A , Blanco-LuquinI , Urdanoz-CasadoAet al. Circular RNA expression profile in blood according to ischemic stroke etiology. Cell Biosci.10, 34 (2020).
  • Dong Z , DengL , PengQ , PanJ , WangY. CircRNA expression profiles and function prediction in peripheral blood mononuclear cells of patients with acute ischemic stroke. J. Cell. Physiol.235(3), 2609–2618 (2020).
  • Zuo L , ZhangL , ZuJet al. Circulating circular RNAs as biomarkers for the diagnosis and prediction of outcomes in acute ischemic stroke. Stroke51(1), 319–323 (2020).
  • Lu D , HoES , MaiHet al. Identification of blood circular RNAs as potential biomarkers for acute ischemic stroke. Front. Neurosci.14, 81 (2020).
  • Li S , ChenL , XuCet al. Expression profile and bioinformatics analysis of circular RNAs in acute ischemic stroke in a South Chinese Han population. Sci. Rep.10(1), 10138 (2020).
  • Tiedt S , PrestelM , MalikRet al. RNA-seq identifies circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as potential biomarkers for acute ischemic stroke. Circ. Res.121(8), 970–980 (2017).
  • Dou Z , YuQ , WangGet al. Circular RNA expression profiles alter significantly after intracerebral hemorrhage in rats. Brain Res.1726, 146490 (2020).
  • Zhong Y , LiX , LiCet al. Intracerebral hemorrhage alters circular RNA expression profiles in the rat brain. Am. J. Transl. Res.12(8), 4160–4174 (2020).
  • Dykstra-Aiello C , JicklingGC , AnderBPet al. Altered expression of long noncoding RNAs in blood after ischemic stroke and proximity to putative stroke risk loci. Stroke47(12), 2896–2903 (2016).
  • Gao Y , ZhangJ , ZhaoF. Circular RNA identification based on multiple seed matching. Brief Bioinform.19(5), 803–810 (2018).
  • Wang L , FengZ , WangX , WangX , ZhangX. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics26(1), 136–138 (2010).
  • Enright AJ , JohnB , GaulU , TuschlT , SanderC , MarksDS. MicroRNA targets in Drosophila. Genome Biol.5(1), R1 (2003).
  • Dudekula DB , PandaAC , GrammatikakisI , DeS , AbdelmohsenK , GorospeM. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol.13(1), 34–42 (2016).
  • Vlachos IS , ZagganasK , ParaskevopoulouMDet al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res.43(W1), W460–466 (2015).
  • Dweep H , StichtC , PandeyP , GretzN. miRWalk–database: prediction of possible miRNA binding sites by ‘walking’ the genes of three genomes. J. Biomed. Inform.44(5), 839–847 (2011).
  • Durocher M , AnderBP , JicklingGet al. Inflammatory, regulatory, and autophagy co-expression modules and hub genes underlie the peripheral immune response to human intracerebral hemorrhage. J. Neuroinflammation16(1), 56 (2019).
  • Shannon P , MarkielA , OzierOet al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res.13(11), 2498–2504 (2003).
  • Grunkemeier GL , JinR. Net reclassification index: measuring the incremental value of adding a new risk factor to an existing risk model. Ann. Thorac. Surg.99(2), 388–392 (2015).
  • Sun L , ClarkeR , BennettDet al. Causal associations of blood lipids with risk of ischemic stroke and intracerebral hemorrhage in Chinese adults. Nat. Med.25(4), 569–574 (2019).
  • Xiao N , LiuTL , LiHet al. Low serum uric acid levels promote hypertensive intracerebral hemorrhage by disrupting the smooth muscle cell–elastin contractile unit and upregulating the Erk1/2-MMP axis. Transl. Stroke Res.11(5), 1077–1094 (2020).
  • Tuttolomondo A , DiRaimondo D , CasuccioAet al. Relationship between adherence to the Mediterranean diet, intracerebral hemorrhage, and its location. Nutr. Metab. Cardiovasc. Dis.29(10), 1118–1125 (2019).
  • Albanese A , TuttolomondoA , AnileCet al. Spontaneous chronic subdural hematomas in young adults with a deficiency in coagulation factor XIII. Report of three cases. J. Neurosurg.102(6), 1130–1132 (2005).
  • Tuttolomondo A , MaugeriR , OrlandoEet al. Beta-amyloid wall deposit of temporal artery in subjects with spontaneous intracerebral haemorrhage. Oncotarget9(78), 34699–34707 (2018).
  • Bhatia R , WarrierAR , SreenivasVet al. Role of blood biomarkers in differentiating ischemic stroke and intracerebral hemorrhage. Neurol. India68(4), 824–829 (2020).
  • Kumar A , MisraS , YadavAKet al. Role of glial fibrillary acidic protein as a biomarker in differentiating intracerebral haemorrhage from ischaemic stroke and stroke mimics: a meta-analysis. Biomarkers25(1), 1–8 (2020).
  • Gareev I , YangG , SunJet al. Circulating microRNAs as potential noninvasive biomarkers of spontaneous intracerebral hemorrhage. World Neurosurg.133, e369–e375 (2020).
  • Judge C , RuttledgeS , CostelloMet al. Lipid lowering therapy, low-density lipoprotein level and risk of intracerebral hemorrhage – a meta-analysis. J. Stroke Cerebrovasc. Dis.28(6), 1703–1709 (2019).
  • Luo Q , LiuJ , FuBet al. Circular RNAs Hsa_circ_0002715 and Hsa_circ_0035197 in peripheral blood are novel potential biomarkers for new-onset rheumatoid arthritis. Dis. Markers2019, 2073139 (2019).
  • Han F , ZhongC , LiWet al. hsa_circ_0001947 suppresses acute myeloid leukemia progression via targeting hsa-miR-329-5p/CREBRF axis. Epigenomics12(11), 935–953 (2020).
  • Rho SS , AndoK , FukuharaS. Dynamic regulation of vascular permeability by vascular endothelial cadherin-mediated endothelial cell–cell junctions. J. Nippon Med. Sch.84(4), 148–159 (2017).
  • Bennett MR , SinhaS , OwensGK. Vascular smooth muscle cells in atherosclerosis. Circ. Res.118(4), 692–702 (2016).
  • Aufiero S , ReckmanYJ , PintoYM , CreemersEE. Circular RNAs open a new chapter in cardiovascular biology. Nat. Rev. Cardiol.16(8), 503–514 (2019).
  • Shan K , LiuC , LiuBHet al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation136(17), 1629–1642 (2017).
  • Hansen TB , JensenTI , ClausenBHet al. Natural RNA circles function as efficient microRNA sponges. Nature495(7441), 384–388 (2013).
  • Peng L , Chun-GuangQ , Bei-FangLet al. Clinical impact of circulating miR-133, miR-1291 and miR-663b in plasma of patients with acute myocardial infarction. Diagn. Pathol.9, 89 (2014).
  • Meder B , KellerA , VogelBet al. MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res. Cardiol.106(1), 13–23 (2011).
  • Wakabayashi I , EguchiR , SotodaYet al. Blood levels of microRNAs associated with ischemic heart disease differ between Austrians and Japanese: a pilot study. Sci. Rep.10(1), 13628 (2020).
  • Piwecka M , GlazarP , Hernandez-MirandaLRet al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science357(6357), (2017).
  • Zhang X , GuH , WangL , HuangF , CaiJ. MiR-885-3p is down-regulated in peripheral blood mononuclear cells from T1D patients and regulates the inflammatory response via targeting TLR4/NF-kappaB signaling. J. Gene Med.22(1), e3145 (2020).
  • Shi DM , LiLX , BianXYet al. miR-296-5p suppresses EMT of hepatocellular carcinoma via attenuating NRG1/ERBB2/ERBB3 signaling. J. Exp. Clin. Cancer Res.37(1), 294 (2018).
  • Li H , XuH , WenHet al. Overexpression of LH3 reduces the incidence of hypertensive intracerebral hemorrhage in mice. J. Cereb. Blood Flow Metab.39(3), 547–561 (2019).
  • Hoppel C . The role of carnitine in normal and altered fatty acid metabolism. Am. J. Kidney Dis.41(4 Suppl. 4), S4–S12 (2003).
  • Guo X , LiZ , ZhouYet al. Metabolic profile for prediction of ischemic stroke in Chinese hypertensive population. J. Stroke Cerebrovasc. Dis.28(4), 1062–1069 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.