1,832
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Alteration of the m6A Methylation Landscape in a Mouse Model of Scleroderma

, ORCID Icon, &
Pages 1867-1883 | Received 20 Sep 2021, Accepted 03 Nov 2021, Published online: 18 Nov 2021

References

  • Denton CP , KhannaD. Systemic sclerosis. Lancet390(10103), 1685–1699 (2017).
  • Knobler R , MoinzadehP , HunzelmannNet al. European Dermatology Forum S1 guideline on the diagnosis and treatment of sclerosing diseases of the skin, part 1: localized scleroderma, systemic sclerosis and overlap syndromes. J. Eur. Acad. Dermatol. Venereol.31(9), 1401–1424 (2017).
  • Gabrielli A , AvvedimentoEV , KriegT. Scleroderma. N. Engl. J. Med.360(19), 1989–2003 (2009).
  • Royle JG , LanyonPC , GraingeMJ , AbhishekA , PearceFA. The incidence, prevalence, and survival of systemic sclerosis in the UK Clinical Practice Research Datalink. Clin. Rheumatol.37(8), 2103–2111 (2018).
  • Cottin V , BrownKK. Interstitial lung disease associated with systemic sclerosis (SSc-ILD). Respir. Res.20(1), 13 (2019).
  • Giuggioli D , ManfrediA , LumettiF , ColaciM , FerriC. Scleroderma skin ulcers definition, classification and treatment strategies our experience and review of the literature. Autoimmun. Rev.17(2), 155–164 (2018).
  • Bhattacharyya S , WeiJ , VargaJ. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat. Rev. Rheumatol.8(1), 42–54 (2011).
  • Hinchcliff M , O’ReillyS. Current and potential new targets in systemic sclerosis therapy: a new hope. Curr. Rheumatol. Rep.22(8), 42 (2020).
  • Cui Z , HuangN , LiuLet al. Dynamic analysis of m6A methylation spectroscopy during progression and reversal of hepatic fibrosis. Epigenomics12(19), 1707–1723 (2020).
  • Tsou PS , SawalhaAH. Unfolding the pathogenesis of scleroderma through genomics and epigenomics. J. Autoimmun.83, 73–94 (2017).
  • Altorok N , KahalehB. Epigenetics and systemic sclerosis. Semin. Immunopathol.37(5), 453–462 (2015).
  • Tsou PS , VargaJ , O’ReillyS. Advances in epigenetics in systemic sclerosis: molecular mechanisms and therapeutic potential. Nat. Rev. Rheumatol.17(10), 596–607 (2021).
  • Cantara WA , CrainPF , RozenskiJet al. The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res.39(Database issue), D195–D201 (2011).
  • Globisch D , PearsonD , HienzschAet al. Systems-based analysis of modified tRNA bases. Angew. Chem. Int. Ed. Engl.50(41), 9739–9742 (2011).
  • Boccaletto P , MachnickaMA , PurtaEet al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res.46(D1), D303–d307 (2018).
  • Hu J , LinY. Fusarium infection alters the m6A-modified transcript landscape in the cornea. Exp. Eye Res.200, 108216 (2020).
  • Zaccara S , RiesRJ , JaffreySR. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol.20(10), 608–624 (2019).
  • Li X , FanX , YinX , LiuH , YangY. Alteration of N6-methyladenosine epitranscriptome profile in unilateral ureteral obstructive nephropathy. Epigenomics12(14), 1157–1173 (2020).
  • Shi H , WeiJ , HeC. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol. Cell74(4), 640–650 (2019).
  • Dominissini D , Moshitch-MoshkovitzS , SchwartzSet al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature485(7397), 201–206 (2012).
  • Wei CM , GershowitzA , MossB. Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell4(4), 379–386 (1975).
  • Lan Q , LiuPY , HaaseJ , BellJL , HüttelmaierS , LiuT. The critical role of RNA m6A methylation in cancer. Cancer Res.79(7), 1285–1292 (2019).
  • Saneyoshi M , HaradaF , NishimuraS. Isolation and characterization of N6-methyladenosine from Escherichia coli valine transfer RNA. Biochim. Biophys. Acta190(2), 264–273 (1969).
  • Iwanami Y , BrownGM. Methylated bases of ribosomal ribonucleic acid from HeLa cells. Arch. Biochem. Biophys.126(1), 8–15 (1968).
  • Meyer KD , SaletoreY , ZumboP , ElementoO , MasonCE , JaffreySR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell149(7), 1635–1646 (2012).
  • Chen C , WangD , MoshaveriniaAet al. Mesenchymal stem cell transplantation in tight-skin mice identifies miR-151-5p as a therapeutic target for systemic sclerosis. Cell Res.27(4), 559–577 (2017).
  • Wermuth PJ , Piera-VelazquezS , RosenbloomJ , JimenezSA. Existing and novel biomarkers for precision medicine in systemic sclerosis. Nat. Rev. Rheumatol.14(7), 421–432 (2018).
  • Henry TW , MendozaFA , JimenezSA. Role of microRNA in the pathogenesis of systemic sclerosis tissue fibrosis and vasculopathy. Autoimmun. Rev.18(11), 102396 (2019).
  • Atarod S , NordenJ , BibbyLAet al. Differential microRNA expression levels in cutaneous acute graft-versus-host disease. Front. Immunol.9, 1485 (2018).
  • Wang Y , MaoJ , WangXet al. Genome-wide screening of altered m6A-tagged transcript profiles in the hippocampus after traumatic brain injury in mice. Epigenomics11(7), 805–819 (2019).
  • Ma JZ , YangF , ZhouCCet al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary microRNA processing. Hepatology65(2), 529–543 (2017).
  • Zhang C , ZhiWI , LuHet al. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget7(40), 64527–64542 (2016).
  • He Y , HuH , WangYet al. ALKBH5 inhibits pancreatic cancer motility by decreasing long non-coding RNA KCNK15-AS1 methylation. Cell. Physiol. Biochem.48(2), 838–846 (2018).
  • Zhang JX , HuangPJ , WangDPet al. m6A modification regulates lung fibroblast-to-myofibroblast transition through modulating KCNH6 mRNA translation. Mol. Ther. doi:10.1016/j.ymthe.2021.06.008 (2021) ( Epub ahead of print).
  • Mathiyalagan P , AdamiakM , MayourianJet al. FTO-dependent N6-methyladenosine regulates cardiac function during remodeling and repair. Circulation139(4), 518–532 (2019).
  • Wang YN , JinHZ. Transcriptome-wide m6A methylation in skin lesions from patients with psoriasis vulgaris. Front. Cell Dev. Biol.8, 591629(2020).
  • Luo Q , FuB , ZhangL , GuoY , HuangZ , LiJ. Decreased peripheral blood ALKBH5 correlates with markers of autoimmune response in systemic lupus erythematosus. Dis. Markers2020, 8193895 (2020).
  • Luo Q , RaoJ , ZhangLet al. The study of METTL14, ALKBH5, and YTHDF2 in peripheral blood mononuclear cells from systemic lupus erythematosus. Mol. Genet. Genomic Med.8(9), e1298 (2020).
  • Jiang H , CaoK , FanC , CuiX , MaY , LiuJ. Transcriptome-wide high-throughput m6A sequencing of differential m6A methylation patterns in the human rheumatoid arthritis fibroblast-like synoviocytes cell line MH7A. J. Inflamm. Res.14, 575–586 (2021).
  • Lagares D , HinzB. Animal and human models of tissue repair and fibrosis: an introduction. Methods Mol. Biol.2299, 277–290 (2021).
  • Geula S , Moshitch-MoshkovitzS , DominissiniDet al. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science347(6225), 1002–1006 (2015).
  • Marut W , KavianN , ServettazAet al. Amelioration of systemic fibrosis in mice by angiotensin II receptor blockade. Arthritis Rheum.65(5), 1367–1377 (2013).
  • Pesch M , KönigS , AumailleyM. Targeted disruption of the Lama3 gene in adult mice is sufficient to induce skin inflammation and fibrosis. J. Invest. Dermatol.137(2), 332–340 (2017).
  • Moon SJ , BaeJM , ParkKS , TagkopoulosI , KimKJ. Compendium of skin molecular signatures identifies key pathological features associated with fibrosis in systemic sclerosis. Ann. Rheum. Dis.78(6), 817–825 (2019).
  • Ummarino D . Systemic sclerosis: tenascin C perpetuates tissue fibrosis. Nat. Rev. Rheumatol.12(7), 375 (2016).
  • Brissett M , VeraldiKL , PilewskiJM , MedsgerTAJr , Feghali-BostwickCA. Localized expression of tenascin in systemic sclerosis-associated pulmonary fibrosis and its regulation by insulin-like growth factor binding protein 3. Arthritis Rheum.64(1), 272–280 (2012).
  • McHugh J . Systemic sclerosis: STAT3 – a key integrator of profibrotic signalling. Nat. Rev. Rheumatol.13(12), 693 (2017).
  • O’Reilly S , CiechomskaM , CantR , Van LaarJM. Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. J. Biol. Chem.289(14), 9952–9960 (2014).
  • Lim JY , RyuDB , LeeSE , ParkG , MinCK. Mesenchymal stem cells (MSCs) attenuate cutaneous sclerodermatous graft-versus-host disease (Scl-GVHD) through inhibition of immune cell infiltration in a mouse model. J. Invest. Dermatol.137(9), 1895–1904 (2017).
  • Brass DM , McgeeSP , DunkelMKet al. Gender influences the response to experimental silica-induced lung fibrosis in mice. Am. J. Physiol. Lung Cell. Mol. Physiol.299(5), L664–671 (2010).
  • Feng Y , GuoF , XiaZet al. Inhibition of fatty acid-binding protein 4 attenuated kidney fibrosis by mediating macrophage-to-myofibroblast transition. Front. Immunol.11, 566535 (2020).
  • Pendergrass SA , HayesE , FarinaGet al. Limited systemic sclerosis patients with pulmonary arterial hypertension show biomarkers of inflammation and vascular injury. PLoS ONE5(8), e12106 (2010).
  • Paz K , FlynnR , DuJet al. Targeting PI3Kδ function for amelioration of murine chronic graft-versus-host disease. Am. J. Transplant.19(6), 1820–1830 (2019).
  • Akiyama Y , OgawaF , IwataYet al. Autoantibody against activating transcription factor-2 in patients with systemic sclerosis. Clin. Exp. Rheumatol.27(5), 751–757 (2009).
  • Daian T , OhtsuruA , RogounovitchTet al. Insulin-like growth factor-I enhances transforming growth factor-beta-induced extracellular matrix protein production through the P38/activating transcription factor-2 signaling pathway in keloid fibroblasts. J. Invest. Dermatol.120(6), 956–962 (2003).
  • Wang Y , SunJ , KahalehB. Epigenetic down-regulation of microRNA-126 in scleroderma endothelial cells is associated with impaired responses to VEGF and defective angiogenesis. J. Cell. Mol. Med.25(14), 7078–7088 (2021).
  • Dees C , PötterS , ZhangYet al. TGF-β-induced epigenetic deregulation of SOCS3 facilitates STAT3 signaling to promote fibrosis. J. Clin. Invest.130(5), 2347–2363 (2020).
  • Coit P , SchollaertKL , MirizioEM , TorokKS , SawalhaAH. DNA methylation patterns in juvenile systemic sclerosis and localized scleroderma. Clin. Immunol.228, 108756 (2021).
  • Xuan JJ , SunWJ , LinPHet al. RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data. Nucleic Acids Res.46(D1), D327–d334 (2018).
  • Tsou PS , VargaJ , O’ReillyS. Advances in epigenetics in systemic sclerosis: molecular mechanisms and therapeutic potential. Nat. Rev. Rheumatol.17(10), 596–607 (2021).
  • Angiolilli C , MarutW , VanDer Kroef M , ChouriE , ReedquistKA , RadstakeT. New insights into the genetics and epigenetics of systemic sclerosis. Nat. Rev. Rheumatol.14(11), 657–673 (2018).
  • Tseng CC , ChangSJ , TsaiWCet al. Reduced incidence of Type 1 diabetes and Type 2 diabetes in systemic sclerosis: a nationwide cohort study. Joint Bone Spine83(3), 307–313 (2016).
  • Kurmann RD , SandhuAS , CrowsonCSet al. Cardiovascular risk factors and atherosclerotic cardiovascular events among incident cases of systemic sclerosis: results from a population-based cohort (1980–2016). Mayo Clin. Proc.95(7), 1369–1378 (2020).
  • Dziankowska-Bartkowiak B , ZalewskaA , Sysa-JedrzejowskaA. Duration of Raynaud’s phenomenon is negatively correlated with serum levels of interleukin 10 (IL-10), soluble receptor of interleukin 2 (sIL2R), and sFas in systemic sclerosis patients. Med. Sci. Monit.10(5), Cr202–208 (2004).
  • Kikodze N , PantsulaiaI , RekhviashviliKet al. Cytokines and T regulatory cells in the pathogenesis of Type 1 diabetes. Georgian Med. News (222), 29–35 (2013).
  • Vettori S , CuomoG , IudiciMet al. Early systemic sclerosis: serum profiling of factors involved in endothelial, T-cell, and fibroblast interplay is marked by elevated interleukin-33 levels. J. Clin. Immunol.34(6), 663–668 (2014).
  • Rasche SS , PhillipsM , McInerneyMF , SercarzEE , QuinnA. IL-13Rα1 expression on β-cell-specific T cells in NOD mice. Diabetes60(6), 1716–1725 (2011).
  • Kang S , ParkSY , LeeHJ , YooYH. TRAIL upregulates decoy receptor 1 and mediates resistance to apoptosis in insulin-secreting INS-1 cells. Biochem. Biophys. Res. Commun.396(3), 731–735 (2010).
  • Moon J , LeeSY , ChoiJWet al. Metformin ameliorates scleroderma via inhibiting Th17 cells and reducing mTOR-STAT3 signaling in skin fibroblasts. J. Transl. Med.19(1), 192 (2021).
  • Kang YP , LeeSB , LeeJMet al. Metabolic profiling regarding pathogenesis of idiopathic pulmonary fibrosis. J. Proteome Res.15(5), 1717–1724 (2016).
  • Jung UJ , LeeMK , JeongKS , ChoiMS. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J. Nutr.134(10), 2499–2503 (2004).
  • Zhang Z , LiuH , LiuJ. Akt activation: a potential strategy to ameliorate insulin resistance. Diabetes Res. Clin. Pract.156, 107092 (2019).
  • Beijer E , Roodenburg-BenschopC , SchimmelpenninkMC , GruttersJC , MeekB , VeltkampM. Elevated serum amyloid a levels are not specific for sarcoidosis but associate with a fibrotic pulmonary phenotype. Cells10(3), 585 (2021).
  • Wang H , YanW , FengZet al. Plasma proteomic analysis of autoimmune hepatitis in an improved AIH mouse model. J. Transl. Med.18(1), 3 (2020).