470
Views
0
CrossRef citations to date
0
Altmetric
Review

Ubiquitination and SUMOylation: Protein Homeostasis Control Over Cancer

ORCID Icon, &
Pages 43-58 | Received 22 Sep 2021, Accepted 16 Nov 2021, Published online: 08 Dec 2021

References

  • Rape M . Ubiquitylation at the crossroads of development and disease. Nat. Rev. Mol. Cell Biol.19(1), 59–70 (2018).
  • Bogachek MV , ParkJM , DeAndrade JPet al. Inhibiting the SUMO pathway represses the cancer stem cell population in breast and colorectal carcinomas. Stem Cell Reports7(6), 1140–1151 (2016).
  • Ciechanover A , HodY , HershkoA. A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. 1978. Biochem. Biophys. Res. Commun.425(3), 565–570 (2012).
  • Boddy MN , HoweK , EtkinLD , SolomonE , FreemontPS. PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene13, 971–982 (1996).
  • Shen Z , Pardington-PurtymunPE , ComeauxJC , MoyzisRK , ChenDJ. UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics36(2), 271–279 (1996).
  • Okura T , GongL , KamitaniTet al. Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J. Immunol.157(10), 4277–4281 (1996).
  • Matunis MJ , CoutavasE , BlobelG. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol.135(6 Pt 1), 1457–1470 (1996).
  • van Wijk SJ , FuldaS , DikicI , HeilemannM. Visualizing ubiquitination in mammalian cells. EMBO Rep.20(2), e46520 (2019).
  • Xie M , YuJ , GeS , HuangJ , FanX. SUMOylation homeostasis in tumorigenesis. Cancer Lett.469, 301–309 (2020).
  • Dubiella U , SerranoI. The ubiquitin proteasome system as a double agent in plant-virus interactions. Plants (Basel)10(5), 928 (2021).
  • Gill G . SUMO and ubiquitin in the nucleus: different functions, similar mechanisms?Genes Dev.18(17), 2046–2059 (2004).
  • Chen L , LiuS , TaoY. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct. Target Ther.5(1), 90 (2020).
  • Dikic I , WakatsukiS , WaltersKJ. Ubiquitin-binding domains – from structures to functions. Nat. Rev. Mol. Cell Biol.10(10), 659–671 (2009).
  • Iwai K , TokunagaF. Linear polyubiquitination: a new regulator of NF-kappaB activation. EMBO Rep.10(7), 706–713 (2009).
  • Tokunaga F , SakataS , SaekiYet al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat. Cell Biol.11(2), 123–132 (2009).
  • Rahighi S , IkedaF , KawasakiMet al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell136(6), 1098–1109 (2009).
  • Ikeda F , DikicI. Atypical ubiquitin chains: new molecular signals. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep.9(6), 536–542 (2008).
  • Swatek KN , KomanderD. Ubiquitin modifications. Cell Res.26(4), 399–422 (2016).
  • Ohtake F , TsuchiyaH. The emerging complexity of ubiquitin architecture. J. Biochem.161(2), 125–133 (2017).
  • Bremm A , KomanderD. Emerging roles for Lys11-linked polyubiquitin in cellular regulation. Trends Biochem. Sci.36(7), 355–363 (2011).
  • Wickliffe KE , WilliamsonA , MeyerHJ , KellyA , RapeM. K11-linked ubiquitin chains as novel regulators of cell division. Trends Cell Biol.21(11), 656–663 (2011).
  • Elia AE , BoardmanAP , WangDCet al. Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol. Cell59(5), 867–881 (2015).
  • Wu-Baer F , LagrazonK , YuanW , BaerR. The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J. Biol. Chem.278(37), 34743–34746 (2003).
  • Morris JR , SolomonE. BRCA1: BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum. Mol. Genet.13(8), 807–817 (2004).
  • Su V , LauAF. Ubiquitin-like and ubiquitin-associated domain proteins: significance in proteasomal degradation. Cell Mol. Life Sci.66(17), 2819–2833 (2009).
  • Rao SN , SharmaJ , MaityR , JanaNR. Co-chaperone CHIP stabilizes aggregate-prone malin, a ubiquitin ligase mutated in Lafora disease. J. Biol. Chem.285(2), 1404–1413 (2010).
  • Meyer H , BugM , BremerS. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol.14(2), 117–123 (2012).
  • Grumati P , DikicI. Ubiquitin signaling and autophagy. J. Biol. Chem.293(15), 5404–5413 (2018).
  • Koegl M , HoppeT , SchlenkerS , UlrichHD , MayerTU , JentschS. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell96(5), 635–644 (1999).
  • Ciechanover A . The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J.17(24), 7151–7160 (1998).
  • Grumati P , DikicI. Ubiquitin signaling and autophagy. J. Biol. Chem.293(15), 5404–5413 (2018).
  • Husnjak K , DikicI. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem.81, 291–322 (2012).
  • Kirisako T , KameiK , MurataSet al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J.25(20), 4877–4887 (2006).
  • Pickart CM . Mechanisms underlying ubiquitination. Annu. Rev. Biochem.70, 503–533 (2001).
  • Imai Y , SodaM , HatakeyamaSet al. CHIP is associated with Parkin, a gene responsible for familial Parkinson’s disease, and enhances its ubiquitin ligase activity. Mol. Cell10(1), 55–67 (2002).
  • Iwai K , TokunagaF. Linear polyubiquitination: a new regulator of NF-kappaB activation. EMBO Rep.10(7), 706–713 (2009).
  • Antao AM , TyagiA , KimKS , RamakrishnaS. Advances in deubiquitinating enzyme inhibition and applications in cancer therapeutics. Cancers (Basel)12(6), 1579 (2020).
  • Mennerich D , KubaichukK , KietzmannT. DUBs, hypoxia, and cancer. Trends Cancer5(10), 632–653 (2019).
  • Popovic D , VucicD , DikicI. Ubiquitination in disease pathogenesis and treatment. Nat. Med.20(11), 1242–1253 (2014).
  • Hickey CM , WilsonNR , HochstrasserM. Function and regulation of SUMO proteases. Nat. Rev. Mol. Cell Biol.13(12), 755–766 (2012).
  • Yang Y , HeY , WangXet al. Protein SUMOylation modification and its associations with disease. Open Biol.7(10), 170167 (2017).
  • Melchior F . SUMO–nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol.16, 591–626 (2000).
  • Cui Z , ScruggsSB , GildaJE , PingP , GomesAV. Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond. J. Mol. Cell. Cardiol.71, 32–42 (2014).
  • Da Silva-Ferrada E , Ribeiro-RodriguesTM , RodriguezMS , GiraoH. Proteostasis and SUMO in the heart. Int. J. Biochem. Cell Biol.79, 443–450 (2016).
  • Mun MJ , KimJH , ChoiJYet al. Polymorphisms of small ubiquitin-related modifier genes are associated with risk of Alzheimer’s disease in Korean: a case–control study. J. Neurol. Sci.364, 122–127 (2016).
  • Ahn K , SongJH , KimDK , ParkMH , JoSA , KohYH. Ubc9 gene polymorphisms and late-onset Alzheimer’s disease in the Korean population: a genetic association study. Neurosci. Lett.465(3), 272–275 (2009).
  • Seeler JS , DejeanA. SUMO and the robustness of cancer. Nat. Rev. Cancer17(3), 184–197 (2017).
  • Baek SH . A novel link between SUMO modification and cancer metastasis. Cell Cycle5(14), 1492–1495 (2006).
  • Johnson ES . Protein modification by SUMO. Annu. Rev. Biochem.73, 355–382 (2004).
  • Wang Y , DassoM. SUMOylation and deSUMOylation at a glance. J. Cell Sci.122(Pt 23), 4249–4252 (2009).
  • Han ZJ , FengYH , GuBH , LiYM , ChenH. The post-translational modification, SUMOylation, and cancer (review). Int. J. Oncol.52(4), 1081–1094 (2018).
  • Soucy TA , DickLR , SmithPG , MilhollenMA , BrownellJE. The NEDD8 conjugation pathway and its relevance in cancer biology and therapy. Genes Cancer1(7), 708–716 (2010).
  • Zhao C , CollinsMN , HsiangTY , KrugRM. Interferon-induced ISG15 pathway: an ongoing virus-host battle. Trends Microbiol.21(4), 181–186 (2013).
  • Hipp MS , KalveramB , RaasiS , GroettrupM , SchmidtkeG. FAT10, a ubiquitin-independent signal for proteasomal degradation. Mol. Cell. Biol.25(9), 3483–3491 (2005).
  • Basler M , BuergerS , GroettrupM. The ubiquitin-like modifier FAT10 in antigen processing and antimicrobial defense. Mol. Immunol.68(2 Pt A), 129–132 (2015).
  • Enserink JM . Sumo and the cellular stress response. Cell Div.10, 4 (2015).
  • Mahajan R , DelphinC , GuanT , GeraceL , MelchiorF. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell88(1), 97–107 (1997).
  • Saitoh H , HincheyJ. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem.275(9), 6252–6258 (2000).
  • Owerbach D , McKayEM , YehET , GabbayKH , BohrenKM. A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem. Biophys. Res. Commun.337(2), 517–520 (2005).
  • Wang CY , YangP , LiM , GongF. Characterization of a negative feedback network between SUMO4 expression and NFkappaB transcriptional activity. Biochem. Biophys. Res. Commun.381(4), 477–481 (2009).
  • Liang YC , LeeCC , YaoYL , LaiCC , SchmitzML , YangWM. SUMO5, a novel poly-SUMO isoform, regulates PML nuclear bodies. Sci. Rep.6, 26509 (2016).
  • Mazur MJ , vanden Burg HA. Global SUMO proteome responses guide gene regulation, mRNA biogenesis, and plant stress responses. Front. Plant Sci.3, 215 (2012).
  • Eifler K , VertegaalACO. SUMOylation-mediated regulation of cell cycle progression and cancer. Trends Biochem. Sci.40(12), 779–793 (2015).
  • Nayak A , MullerS. SUMO-specific proteases/isopeptidases: SENPs and beyond. Genome Biol.15(7), 422 (2014).
  • Desterro JM , RodriguezMS , KempGD , HayRT. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Biol. Chem.274(15), 10618–10624 (1999).
  • Yeh ET , GongL , KamitaniT. Ubiquitin-like proteins: new wines in new bottles. Gene248(1–2), 1–14 (2000).
  • Sarge KD , Park-SargeOK. SUMOylation and human disease pathogenesis. Trends Biochem. Sci.34(4), 200–205 (2009).
  • Desterro JM , ThomsonJ , HayRT. Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett.417(3), 297–300 (1997).
  • Schwarz SE , MatuschewskiK , LiakopoulosD , ScheffnerM , JentschS. The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme. Proc. Natl Acad. Sci. USA95(2), 560–564 (1998).
  • Sampson DA , WangM , MatunisMJ. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem.276(24), 21664–21669 (2001).
  • Werner A , FlothoA , MelchiorF. The RanBP2/RanGAP1*SUMO1/Ubc9 complex is a multisubunit SUMO E3 ligase. Mol. Cell46(3), 287–298 (2012).
  • Cappadocia L , PichlerA , LimaCD. Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase. Nat. Struct. Mol. Biol.22(12), 968–975 (2015).
  • Schmidt D , MullerS. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc. Natl Acad. Sci. USA99(5), 2872–2877 (2002).
  • Pichler A , GastA , SeelerJS , DejeanA , MelchiorF. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell108(1), 109–120 (2002).
  • Kagey MH , MelhuishTA , WottonD. The polycomb protein Pc2 is a SUMO E3. Cell113(1), 127–137 (2003).
  • Stephan AK , KliszczakM , MorrisonCG. The Nse2/Mms21 SUMO ligase of the Smc5/6 complex in the maintenance of genome stability. FEBS Lett.585(18), 2907–2913 (2011).
  • Sanyal S , MondalP , SenS , SenguptaBandyopadhyay S , DasC. SUMO E3 ligase CBX4 regulates hTERT-mediated transcription of CDH1 and promotes breast cancer cell migration and invasion. Biochem. J.477(19), 3803–3818 (2020).
  • Chu Y , YangX. SUMO E3 ligase activity of TRIM proteins. Oncogene30(9), 1108–1116 (2011).
  • Reverter D , LimaCD. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature435(7042), 687–692 (2005).
  • Yang SH , SharrocksAD. The SUMO E3 ligase activity of Pc2 is coordinated through a SUMO interaction motif. Mol. Cell. Biol.30(9), 2193–2205 (2010).
  • Mukhopadhyay D , DassoM. Modification in reverse: the SUMO proteases. Trends Biochem. Sci.32(6), 286–295 (2007).
  • Yeh ET . SUMOylation and de-SUMOylation: wrestling with life’s processes. J. Biol. Chem.284(13), 8223–8227 (2009).
  • Mendes AV , GrouCP , AzevedoJE , PintoMP. Evaluation of the activity and substrate specificity of the human SENP family of SUMO proteases. Biochim. Biophys. Acta1863(1), 139–147 (2016).
  • Shin EJ , ShinHM , NamEet al. DeSUMOylating isopeptidase: a second class of SUMO protease. EMBO Rep.13(4), 339–346 (2012).
  • Hutten S , ChachamiG , WinterU , MelchiorF , LamondAI. A role for the Cajal-body-associated SUMO isopeptidase USPL1 in snRNA transcription mediated by RNA polymerase II. J. Cell Sci.127(Pt 5), 1065–1078 (2014).
  • Desterro JM , RodriguezMS , HayRT. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol. Cell2(2), 233–239 (1998).
  • Cheng J , KangX , ZhangS , YehET. SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell131(3), 584–595 (2007).
  • Buschmann T , FuchsSY , LeeCG , PanZQ , RonaiZ. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell101(7), 753–762 (2000).
  • Zhu B , FarrisTR , MilliganSLet al. Rapid identification of ubiquitination and SUMOylation target sites by microfluidic peptide array. Biochem. Biophys. Rep.5, 430–438 (2016).
  • Dou QP , ZonderJA. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr. Cancer Drug Targets14(6), 517–536 (2014).
  • Song LN , SilvaJ , KollerA , RosenthalA , ChenEI , GelmannEP. The tumor suppressor NKX3.1 is targeted for degradation by DYRK1B kinase. Mol. Cancer Res.13(5), 913–922 (2015).
  • Markowski MC , BowenC , GelmannEP. Inflammatory cytokines induce phosphorylation and ubiquitination of prostate suppressor protein NKX3.1. Cancer Res.68(17), 6896–6901 (2008).
  • Huang H , ReganKM , WangFet al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc. Natl Acad. Sci. USA102(5), 1649–1654 (2005).
  • Xu L , ZhuJ , HuXet al. c-IAP1 cooperates with Myc by acting as a ubiquitin ligase for Mad1. Mol. Cell28(5), 914–922 (2007).
  • Chada S , SuttonRB , EkmekciogluSet al. MDA-7/IL-24 is a unique cytokine-tumor suppressor in the IL-10 family. Int. Immunopharmacol.4(5), 649–667 (2004).
  • Gopalan B , ShankerM , ScottA , BranchCD , ChadaS , RameshR. MDA-7/IL-24, a novel tumor suppressor/cytokine is ubiquitinated and regulated by the ubiquitin-proteasome system, and inhibition of MDA-7/IL-24 degradation enhances the antitumor activity. Cancer Gene Ther.15(1), 1–8 (2008).
  • Sun T , LiuZ , YangQ. The role of ubiquitination and deubiquitination in cancer metabolism. Mol. Cancer19(1), 146 (2020).
  • Guo P , MaX , ZhaoWet al. TRIM31 is upregulated in hepatocellular carcinoma and promotes disease progression by inducing ubiquitination of TSC1-TSC2 complex. Oncogene37(4), 478–488 (2018).
  • Zeng T , WangQ , FuJet al. Impeded Nedd4-1-mediated Ras degradation underlies Ras-driven tumorigenesis. Cell Rep.7(3), 871–882 (2014).
  • Li X , WuL , ZoppM , KopelovS , DuW. p53-TP53-induced glycolysis regulator mediated glycolytic suppression attenuates DNA damage and genomic instability in Fanconi anemia hematopoietic stem cells. Stem Cells37(7), 937–947 (2019).
  • Wade M , WangYV , WahlGM. The p53 orchestra: mdm2 and Mdmx set the tone. Trends Cell Biol.20(5), 299–309 (2010).
  • Allton K , JainAK , HerzHMet al. Trim24 targets endogenous p53 for degradation. Proc. Natl Acad. Sci. USA106(28), 11612–11616 (2009).
  • Bang S , KaurS , KurokawaM. Regulation of the p53 family proteins by the ubiquitin proteasomal pathway. Int. J. Mol. Sci.21(1), 261 (2019).
  • Banks D , WuM , HigaLAet al. L2DTL/CDT2 and PCNA interact with p53 and regulate p53 polyubiquitination and protein stability through MDM2 and CUL4A/DDB1 complexes. Cell Cycle5(15), 1719–1729 (2006).
  • Barak Y , JuvenT , HaffnerR , OrenM. Mdm2 expression is induced by wild type p53 activity. EMBO J.12(2), 461–468 (1993).
  • Zhang Y , CuiN , ZhengG. Ubiquitination of P53 by E3 ligase MKRN2 promotes melanoma cell proliferation. Oncol. Lett.19(3), 1975–1984 (2020).
  • Theruvath AJ , NejadnikH , LenkovOet al. Tracking stem cell implants in cartilage defects of minipigs by using ferumoxytol-enhanced MRI. Radiology292(1), 129–137 (2019).
  • Luo K , EhrlichE , XiaoZ , ZhangW , KetnerG , YuXF. Adenovirus E4orf6 assembles with Cullin5-ElonginB-ElonginC E3 ubiquitin ligase through an HIV/SIV Vif-like BC-box to regulate p53. FASEB J.21(8), 1742–1750 (2007).
  • Luo Z , YeX , ShouF , ChengY , LiF , WangG. RNF115-mediated ubiquitination of p53 regulates lung adenocarcinoma proliferation. Biochem. Biophys. Res. Commun.530(2), 425–431 (2020).
  • Weber JD , TaylorLJ , RousselMF , SherrCJ , Bar-SagiD. Nucleolar Arf sequesters Mdm2 and activates p53. Nat. Cell Biol.1(1), 20–26 (1999).
  • Zhang W , GongJ , YangHet al. The mitochondrial protein MAVS stabilizes p53 to suppress tumorigenesis. Cell Rep.30(3), 725–738 e4 (2020).
  • Li X , GuoM , CaiLet al. Competitive ubiquitination activates the tumor suppressor p53. Cell Death Differ.27(6), 1807–1818 (2020).
  • Hu Y , YuJ , WangQet al. Tartrate-resistant acid phosphatase 5/ACP5 interacts with p53 to control the expression of SMAD3 in lung adenocarcinoma. Mol. Ther. Oncolytics16, 272–288 (2020).
  • Hock AK , VigneronAM , CarterS , LudwigRL , VousdenKH. Regulation of p53 stability and function by the deubiquitinating enzyme USP42. EMBO J.30(24), 4921–4930 (2011).
  • Ke JY , DaiCJ , WuWLet al. USP11 regulates p53 stability by deubiquitinating p53. J. Zhejiang Univ. Sci. B.15(12), 1032–1038 (2014).
  • Lim KH , ParkJJ , GuBH , KimJO , ParkSG , BaekKH. HAUSP-nucleolin interaction is regulated by p53-Mdm2 complex in response to DNA damage response. Sci. Rep.5, 12793 (2015).
  • Liu J , ChungHJ , VogtMet al. JTV1 co-activates FBP to induce USP29 transcription and stabilize p53 in response to oxidative stress. EMBO J.30(5), 846–858 (2011).
  • Liu WT , HuangKY , LuMCet al. TGF-β upregulates the translation of USP15 via the PI3K/AKT pathway to promote p53 stability. Oncogene36(19), 2715–2723 (2017).
  • Piao S , PeiHZ , HuangB , BaekSH. Ovarian tumor domain-containing protein 1 deubiquitinates and stabilizes p53. Cell Signal33, 22–29 (2017).
  • Pu Q , LvYR , DongK , GengWW , GaoHD. Tumor suppressor OTUD3 induces growth inhibition and apoptosis by directly deubiquitinating and stabilizing p53 in invasive breast carcinoma cells. BMC Cancer20(1), 583 (2020).
  • Yuan J , LuoK , ZhangL , ChevilleJC , LouZ. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell140(3), 384–396 (2010).
  • Zhang L , GongF. Involvement of USP24 in the DNA damage response. Mol. Cell Oncol.3(1), e1011888 (2016).
  • Li M , ChenD , ShilohAet al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature416(6881), 648–653 (2002).
  • Sheng Y , SaridakisV , SarkariFet al. Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nat. Struct. Mol. Biol.13(3), 285–291 (2006).
  • Sarkari F , LaDelfa A , ArrowsmithCH , FrappierL , ShengY , SaridakisV. Further insight into substrate recognition by USP7: structural and biochemical analysis of the HdmX and Hdm2 interactions with USP7. J. Mol. Biol.402(5), 825–837 (2010).
  • Xia X , LiaoY , HuangCet al. Deubiquitination and stabilization of estrogen receptor alpha by ubiquitin-specific protease 7 promotes breast tumorigenesis. Cancer Lett.465, 118–128 (2019).
  • Masuya D , HuangC , LiuDet al. The HAUSP gene plays an important role in non-small cell lung carcinogenesis through p53-dependent pathways. J. Pathol.208(5), 724–732 (2006).
  • Yang Y , LudwigRL , JensenJPet al. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell7(6), 547–559 (2005).
  • Kruse JP , GuW. MSL2 promotes Mdm2-independent cytoplasmic localization of p53. J. Biol. Chem.284(5), 3250–3263 (2009).
  • Sentis S , LeRomancer M , BianchinC , RostanMC , CorboL. SUMOylation of the estrogen receptor alpha hinge region regulates its transcriptional activity. Mol. Endocrinol.19(11), 2671–2684 (2005).
  • Kaikkonen S , PaakinahoV , SutinenP , LevonenAL , PalvimoJJ. Prostaglandin 15d-PGJ(2) inhibits androgen receptor signaling in prostate cancer cells. Mol. Endocrinol.27(2), 212–223 (2013).
  • Seeler JS , BischofO , NacerddineK , DejeanA. SUMO, the three Rs and cancer. Curr. Top. Microbiol. Immunol.313, 49–71 (2007).
  • Decque A , JoffreO , MagalhaesJGet al. SUMOylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing. Nat. Immunol.17(2), 140–149 (2016).
  • Yang LS , ZhangXJ , XieYY , SunXJ , ZhaoR , HuangQH. SUMOylated MAFB promotes colorectal cancer tumorigenesis. Oncotarget7(50), 83488–83501 (2016).
  • Li R , WeiJ , JiangCet al. Akt SUMOylation regulates cell proliferation and tumorigenesis. Cancer Res.73(18), 5742–5753 (2013).
  • Tomasi ML , TomasiI , RamaniKet al. S-adenosyl methionine regulates ubiquitin-conjugating enzyme 9 protein expression and sumoylation in murine liver and human cancers. Hepatology56(3), 982–993 (2012).
  • Shen HJ , ZhuHY , YangC , JiF. SENP2 regulates hepatocellular carcinoma cell growth by modulating the stability of beta-catenin. Asian Pac. J. Cancer Prev.13(8), 3583–3587 (2012).
  • Jiang QF , TianYW , ShenQ , XueHZ , LiK. SENP2 regulated the stability of β-catenin through WWOX in hepatocellular carcinoma cell. Tumour Biol.35(10), 9677–9682 (2014).
  • Wang L , BanerjeeS. Differential PIAS3 expression in human malignancy. Oncol Rep.11(6), 1319–1324 (2004).
  • Jacques C , BarisO , Prunier-MirebeauDet al. Two-step differential expression analysis reveals a new set of genes involved in thyroid oncocytic tumors. J. Clin. Endocrinol. Metab.90(4), 2314–2320 (2005).
  • Cheng J , BawaT , LeeP , GongL , YehET. Role of deSUMOylation in the development of prostate cancer. Neoplasia8(8), 667–676 (2006).
  • Singh RK , LiangD , GajjalaiahvariUR , KabbajMH , PaikJ , GunjanA. Excess histone levels mediate cytotoxicity via multiple mechanisms. Cell Cycle9(20), 4236–4244 (2010).
  • Singh RK , KabbajMH , PaikJ , GunjanA. Histone levels are regulated by phosphorylation and ubiquitylation-dependent proteolysis. Nat. Cell Biol.11(8), 925–933 (2009).
  • Jeusset LM , McManusKJ. Developing targeted therapies that exploit aberrant histone ubiquitination in cancer. Cells8(2), 165 (2019).
  • Cheung P , AllisCD , Sassone-CorsiP. Signaling to chromatin through histone modifications. Cell103(2), 263–271 (2000).
  • Kimura A , MatsubaraK , HorikoshiM. A decade of histone acetylation: marking eukaryotic chromosomes with specific codes. J. Biochem.138(6), 647–662 (2005).
  • Berger SL . The complex language of chromatin regulation during transcription. Nature447(7143), 407–412 (2007).
  • Ghate NB , KimS , SpillerEet al. VprBP directs epigenetic gene silencing through histone H2A phosphorylation in colon cancer. Mol. Oncol.15(10), 2801–2817 (2021).
  • Yang IH , ShinJA , LeeKE , KimJ , ChoNP , ChoSD. Oridonin induces apoptosis in human oral cancer cells via phosphorylation of histone H2AX. Eur. J. Oral Sci.125(6), 438–443 (2017).
  • Nakagawa T , NakayamaK. Protein monoubiquitylation: targets and diverse functions. Genes Cells20(7), 543–562 (2015).
  • Fuchs G , OrenM. Writing and reading H2B monoubiquitylation. Biochim. Biophys. Acta1839(8), 694–701 (2014).
  • Groothuis TA , DantumaNP , NeefjesJ , SalomonsFA. Ubiquitin crosstalk connecting cellular processes. Cell Div.1, 21 (2006).
  • Endoh M , EndoTA , EndohTet al. Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet.8(7), e1002774 (2012).
  • Lee JS , ShuklaA , SchneiderJet al. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell131(6), 1084–1096 (2007).
  • Bhat KP , GreerSF. Proteolytic and non-proteolytic roles of ubiquitin and the ubiquitin proteasome system in transcriptional regulation. Biochim. Biophys. Acta1809(2), 150–155 (2011).
  • Zou C , MallampalliRK. Regulation of histone modifying enzymes by the ubiquitin-proteasome system. Biochim. Biophys. Acta1843(4), 694–702 (2014).
  • Vannam R , SayilganJ , OjedaSet al. Targeted degradation of the enhancer lysine acetyltransferases CBP and p300. Cell Chem. Biol.28(4), 503–514 e12 (2021).
  • Wang T , ChenK , YaoWet al. Acetylation of lactate dehydrogenase B drives NAFLD progression by impairing lactate clearance. J. Hepatol.74(5), 1038–1052 (2021).
  • Chen AN , LuoY , YangYHet al. Lactylation, a novel metabolic reprogramming code: current status and prospects. Front. Immunol.12, 688910 (2021).
  • Chen J , HalappanavarS , Th’ng JP , LiQ. Ubiquitin-dependent distribution of the transcriptional coactivator p300 in cytoplasmic inclusion bodies. Epigenetics2(2), 92–99 (2007).
  • Iwai K . Discovery of linear ubiquitination, a crucial regulator for immune signaling and cell death. FEBS J.288(4), 1060–1069 (2021).
  • Feleciano DR , ArnsburgK , KirsteinJ. Interplay between redox and protein homeostasis. Worm5(2), e1170273 (2016).
  • Cardenas-Rodriguez M , TokatlidisK. Cytosolic redox components regulate protein homeostasis via additional localisation in the mitochondrial intermembrane space. FEBS Lett.591(17), 2661–2670 (2017).
  • Guerrero-Gomez D , Mora-LorcaJA , Saenz-NarcisoBet al. Loss of glutathione redox homeostasis impairs proteostasis by inhibiting autophagy-dependent protein degradation. Cell Death Differ.26(9), 1545–1565 (2019).
  • Dai X , BazakaK , RichardDJ , ThompsonERW , OstrikovKK. The emerging role of gas plasma in oncotherapy. Trends Biotechnol.36(11), 1183–1198 (2018).
  • Lai KG , ChenCF , HoCT , LiuJJ , LiuTZ , ChernCL. Novel roles of folic acid as redox regulator: modulation of reactive oxygen species sinker protein expression and maintenance of mitochondrial redox homeostasis on hepatocellular carcinoma. Tumour Biol.39(6), 1010428317702649 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.