1,360
Views
1
CrossRef citations to date
0
Altmetric
Interview

Risks and Rewards of Big-Data in Epigenomics Research: An Interview with Melanie Ehrlich

ORCID Icon
Pages 351-358 | Received 14 Feb 2022, Published online: 08 Mar 2022

References

  • Ehrlich M . DNA methylation in cancer: too much, but also too little. Oncogene21(35), 5400–5413 (2002).
  • Kondo T , BobekMP , KuickRet al. Whole-genome methylation scan in ICF syndrome: hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. Hum. Mol. Genet.9(4), 597–604 (2000).
  • Ehrlich KC , LaceyM , EhrlichM. Epigenomes doi:10.3390/epigenomes40100014(1), (2020).
  • Baribault C , EhrlichKC , PonnaluriVKC , PradhanS , LaceyM , EhrlichM. Developmentally linked human DNA hypermethylation is associated with down-modulation, repression, and upregulation of transcription. Epigenetics13(3), 275–289 (2018).
  • Chandra S , EhrlichKC , LaceyM , BaribaultC , EhrlichM. Epigenetics and expression of key genes associated with cardiac fibrosis: NLRP3, MMP2, MMP9, CCN2/CTGF and AGT. Epigenomics13(3), 219–234 (2021).
  • Lacey M , BaribaultC , EhrlichKC , EhrlichM. Atherosclerosis-associated differentially methylated regions can reflect the disease phenotype and are often at enhancers. Atherosclerosis280, 183–191 (2019).
  • Ponnaluri VK , EhrlichKC , ZhangGet al. Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression. Epigenetics12(2), 123–138 (2016).
  • Ehrlich M , EhrlichKC. A novel, highly modified, bacteriophage DNA in which thymine is partly replaced by a phosphoglucuronate moiety covalently bound to 5-(4′,5′-dihydroxypentyl)uracil. J. Biol. Chem.256(19), 9966–9972 (1981).
  • Kropinski AM , TurnerD , NashJHEet al. The Sequence of Two Bacteriophages with Hypermodified Bases Reveals Novel Phage-Host Interactions. Viruses10(5), 217 (2018).
  • Ehrlich M , EhrlichK , MayoJA. Unusual properties of the DNA from Xanthomonas phage XP-12 in which 5-methylcytosine completely replaces cytosine. Biochim. Biophys. Acta395(2), 109–119 (1975).
  • Wang RY , KuoKC , GehrkeCW , HuangLH , EhrlichM. Heat- and alkali-induced deamination of 5-methylcytosine and cytosine residues in DNA. Biochim. Biophys. Acta697(3), 371–377 (1982).
  • Ehrlich M , Gama-SosaMA , CarreiraLH , LjungdahlLG , KuoKC , GehrkeCW. DNA methylation in thermophilic bacteria: N4-methylcytosine, 5-methylcytosine, and N6-methyladenine. Nucleic Acids Res.13(4), 1399–1412 (1985).
  • Huang LH , WangR , Gama-SosaMA , ShenoyS , EhrlichM. A protein from human placental nuclei binds preferentially to 5-methylcytosine-rich DNA. Nature308, 293–295 (1984).
  • Ehrlich M , Gama-SosaM , HuangLHet al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res.10, 2709–2721 (1982).
  • Gama-Sosa MA , SlagelVA , TrewynRWet al. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res.11, 6883–6894 (1983).
  • Ehrlich KC , LaceyM , EhrlichM. Tissue-specific epigenetics of atherosclerosis-related ANGPT and ANGPTL genes. Epigenomics11(2), 169–186 (2019).
  • Dewey FE , GusarovaV , DunbarRLet al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N. Engl. J. Med.377(3), 211–221 (2017).
  • Kuo TT , HuangTC , TengMH. 5-Methylcytosine replacing cytosine in the deoxyribonucleic acid of a bacteriophage for Xanthomonas oryzae. J. Mol. Biol.34(2), 373–375 (1968).
  • Sengupta PK , EhrlichM , SmithBD. A methylation-responsive MDBP/RFX site is in the first exon of the collagen alpha2(I) promoter. J. Biol. Chem.274(51), 36649–36655 (1999).
  • Kolata G . Fitting methylation into development. Science (New York, NY)228(4704), 1183–1184 (1985).
  • Ehrlich M , LaceyM. DNA methylation and differentiation: silencing, upregulation and modulation of gene expression. Epigenomics5(5), 553–568 (2013).
  • Ehrlich M , EhrlichKC. DNA cytosine methylation and hydroxymethylation at the borders. Epigenomics6(6), 563–566 (2014).
  • Ehrlich M . DNA hypomethylation in cancer cells. Epigenomics1(2), 239–259 (2009).
  • Ehrlich M . DNA hypermethylation in disease: mechanisms and clinical relevance. Epigenetics14(12), 1141–1163 (2019).
  • Myers RM , StamatoyannopoulosJ , SnyderMet al. A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol.9(4), e1001046 (2011).
  • Kundaje A , MeulemanW , ErnstJet al. Integrative analysis of 111 reference human epigenomes. Nature518(7539), 317–330 (2015).
  • Karlsson M , ZhangC , MéarLet al. A single-cell type transcriptomics map of human tissues. Sci. Adv.7(31), 1–9 (2021).
  • Ehrlich KC , DengHW , EhrlichM. Epigenetics of mitochondria-associated genes in striated muscle. Epigenomes6(1), 1–23 (2021).
  • Ehrlich KC , BaribaultC , EhrlichM. Epigenetics of muscle- and brain-specific expression of KLHL family genes. Int. J. Mol. Sci.21(21), 1–21 (2020).
  • Chandra S , TerragniJ , ZhangGet al. Tissue-specific epigenetics in gene neighborhoods: myogenic transcription factor genes. Hum. Mol. Genet.24(16), 4660–4673 (2015).
  • Tsumagari K , BaribaultC , TerragniJet al. Early de novo DNA methylation and prolonged demethylation in the muscle lineage. Epigenetics8(3), 317–332 (2013).
  • Ehrlich KC , PatersonHL , LaceyM , EhrlichM. DNA hypomethylation in intragenic and intergenic enhancer chromatin of muscle-specific genes usually correlates with their expression. Yale J. Biol. Med.89(4), 441–455 (2016).
  • Lacey M , BaribaultC , EhrlichKC , EhrlichM. Data showing atherosclerosis-associated differentially methylated regions are often at enhancers. Data Brief23, 103812 (2019).
  • Sun Z , VaisvilaR , HussongLMet al. Nondestructive enzymatic deamination enables single-molecule long-read amplicon sequencing for the determination of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Genome Res.31(2), 291–300 (2021).
  • Pidsley R , ZotenkoE , PetersTJet al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol.17(1), 208 (2016).
  • Barker ED , RobertsS , WaltonE. Hidden hypotheses in ‘hypothesis-free’ genome-wide epigenetic associations. Curr. Opin. Psychol.27, 13–17 (2019).
  • Michels KB , BinderAM , DedeurwaerderSet al. Recommendations for the design and analysis of epigenome-wide association studies. Nat. Methods10(10), 949–955 (2013).
  • Lin X , TehAL , ChenLet al. Choice of surrogate tissue influences neonatal EWAS findings. BMC Med.15(1), 211 (2017).
  • Li QS , VasanthakumarA , DavisJWet al. Association of peripheral blood DNA methylation level with Alzheimer’s disease progression. Clin. Epigenetics13(1), 191 (2021).
  • Taylor DL , JacksonAU , NarisuNet al. Integrative analysis of gene expression, DNA methylation, physiological traits, and genetic variation in human skeletal muscle. Proc. Natl Acad. Sci. USA116(22), 10883–10888 (2019).
  • Ren X , KuanPF. methylGSA: a Bioconductor package and Shiny app for DNA methylation data length bias adjustment in gene set testing. Bioinformatics35(11), 1958–1959 (2019).
  • Konigsberg IR , YangIV. It’s in the (epi)genetics: effects of DNA methylation on gene expression in atopic asthma? Chest158(5), 1799–1801 (2020).
  • Komaki S , OhmomoH , HachiyaTet al. Longitudinal DNA methylation dynamics as a practical indicator in clinical epigenetics. Clin. Epigenetics13(1), 219 (2021).
  • Riggs AD , XiongZ. Methylation and epigenetic fidelity. Proc. Natl Acad. Sci. USA101(1), 4–5 (2004).
  • Lacey MR , BaribaultC , EhrlichM. Modeling, simulation and analysis of methylation profiles from reduced representation bisulfite sequencing experiments. Stat. Appl. Genet. Mol. Biol.12(6), 723–742 (2013).
  • Srivastava A , KarpievitchYV , EichtenSR , BorevitzJO , ListerR. HOME: a histogram based machine learning approach for effective identification of differentially methylated regions. BMC Bioinformatics20(1), 253 (2019).
  • Davies NM , HolmesMV , DaveySmith G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ362, k601 (2018).
  • Zhang X , LiTY , XiaoHMet al. Epigenomic and transcriptomic prioritization of candidate obesity-risk regulatory GWAS SNPs. Int. J. Mol. Sci.23(3), 1271 (2022).
  • Zhang X , DengHW , ShenH , EhrlichM. Prioritization of osteoporosis-associated genome-wide association study (GWAS) single-nucleotide polymorphisms (SNPs) using epigenomics and transcriptomics. JBMR Plus5(5), e10481 (2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.