146
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Alteration of the N6-Methyladenosine Epitranscriptomic Profile in Synthetic Phthalate-Treated Human Induced Pluripotent Stem Cell-Derived Endothelial Cells

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1139-1155 | Received 03 Apr 2022, Accepted 30 Aug 2022, Published online: 31 Oct 2022

References

  • Rowdhwal SSS , ChenJ. Toxic effects of di-2-ethylhexyl phthalate: an overview. Biomed. Res. Int.2018, 1750368 (2018).
  • Jamarani R , ErythropelH , NicellJ , LeaskR , MarićM. How green is your plasticizer?Polymers10(8), 834 (2018).
  • Hanioka N , TakaharaY , TakaharaY , Tanaka-KagawaT , JinnoH , NarimatsuS. Hydrolysis of di-n-butyl phthalate, butylbenzyl phthalate and di(2-ethylhexyl) phthalate in human liver microsomes. Chemosphere89(9), 1112–1117 (2012).
  • Serrano SE , BraunJ , TrasandeL , DillsR , SathyanarayanaS. Phthalates and diet: a review of the food monitoring and epidemiology data. Environ. Health13(1), 43 (2014).
  • Kato K , SilvaMJ , ReidyJAet al. Mono(2-ethyl-5-hydroxyhexyl) phthalate and mono-(2-ethyl-5-oxohexyl) phthalate as biomarkers for human exposure assessment to di-(2-ethylhexyl) phthalate. Environ. Health Perspect.112(3), 327–330 (2004).
  • Silva MJ , BarrDB , ReidyJAet al. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999–2000. Environ. Health Perspect.112(3), 331–338 (2004).
  • Hauser R , MeekerJD , SinghNPet al. DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum. Reprod.22(3), 688–695 (2007).
  • Pan G , HanaokaT , YoshimuraMet al. Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ. Health Perspect.114(11), 1643–1648 (2006).
  • Muczynski V , LecureuilC , MessiaenSet al. Cellular and molecular effect of MEHP involving LXRα in human fetal testis and ovary. PLOS ONE7(10), e48266 (2012).
  • Latini G , DeFelice C , PrestaGet al. In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy. Environ. Health Perspect.111(14), 1783–1785 (2003).
  • Kambia K , DineT , GressierB , Dupin-SprietT , LuyckxM , BrunetC. Evaluation of the direct toxicity of trioctyltrimellitate (TOTM), di(2-ethylhexyl) phthalate (DEHP) and their hydrolysis products on isolated rat hepatocytes. Int. J. Artif. Organs27(11), 971–978 (2004).
  • Rael LT , Bar-OrR , AmbrusoDRet al. Phthalate esters used as plasticizers in packed red blood cell storage bags may lead to progressive toxin exposure and the release of pro-inflammatory cytokines. Oxid. Med. Cell Longev.2(3), 166–171 (2009).
  • Faouzi MA , DineT , GressierBet al. Exposure of hemodialysis patients to di-2-ethylhexyl phthalate. Int. J. Pharm.180(1), 113–121 (1999).
  • Crocker JFS , SafeSH , AcottP. Effects of chronic phthalate exposure on the kidney. J. Toxicol. Environ. Health23(4), 433–444 (1988).
  • Halden RU . Plastics and health risks. Annu. Rev. Public Health31(1), 179–194 (2010).
  • Reilly M , BrunoCD , PrudencioTMet al. Potential consequences of the red blood cell storage lesion on cardiac electrophysiology. J. Am. Heart Assoc.9(21), 017748 (2020).
  • Jaimes R , McCulloughD , SiegelBet al. Plasticizer interaction with the heart: chemicals used in plastic medical devices can interfere with cardiac electrophysiology. Circ. Arrhythm. Electrophysiol.12(7), e007294 (2019).
  • Zhao J-F , HsiaoS-H , HsuM-Het al. Di-(2-ethylhexyl) phthalate accelerates atherosclerosis in apolipoprotein E-deficient mice. Arch. Toxicol.90(1), 181–190 (2016).
  • Liu N , JiangL , SunXet al. Mono-(2-ethylhexyl) phthalate induced ROS-dependent autophagic cell death in human vascular endothelial cells. Toxicol. In Vitro44, 49–56 (2017).
  • Ban J-B , FanX-W , HuangQet al. Mono-(2-ethylhexyl) phthalate induces injury in human umbilical vein endothelial cells. PLOS ONE9(5), e97607 (2014).
  • An L . Exposure to mono (2-ethylhexyl) phthalate facilitates apoptosis and pyroptosis of human endometrial microvascular endothelial cells through NLRP3 inflammasome. J. Appl. Toxicol.2021(41), 755–764 (2020).
  • Boo SH , KimYK. The emerging role of RNA modifications in the regulation of mRNA stability. Exp. Mol. Med.52(3), 400–408 (2020).
  • Wang X , ZhaoB , RoundtreeIet al. N6-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell161(6), 1388–1399 (2015).
  • Shi H , WeiJ , HeC. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol. Cell74(4), 640–650 (2019).
  • Zhou KI , ParisienM , DaiQet al. N6-methyladenosine modification in a long noncoding RNA hairpin predisposes its conformation to protein binding. J. Mol. Biol.428(5, Part A), 822–833 (2016).
  • Engel M , EggertC , KaplickPMet al. The role of m6A/m-RNA methylation in stress response regulation. Neuron99(2), 389–403.e389 (2018).
  • Jia G , FuY , HeC. Reversible RNA adenosine methylation in biological regulation. Trends Genet.29(2), 108–115 (2013).
  • Han Z , XuZ , YuYet al. ALKBH5-mediated m6A mRNA methylation governs human embryonic stem cell cardiac commitment. Mol.Ther. Nucleic Acids26, 22–33 (2021).
  • Hess ME , HessS , MeyerKDet al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat. Neurosci.16(8), 1042–1048 (2013).
  • Wei W , JiX , GuoX , JiS. Regulatory role of NV methyladenosine (m6A) methylation in RNA processing and human diseases. J. Cell. Biochem.118 (9), 2534–2543 (2017).
  • Sayed N , LiuC , WuJC. Translation of human-induced pluripotent stem cells. J. Am. Coll. Cardiol.67(18), 2161–2176 (2016).
  • Kitani T , OngS-G , LamChi Ket al. Human-induced pluripotent stem cell model of trastuzumab-induced cardiac dysfunction in patients with breast cancer. Circulation139(21), 2451–2465 (2019).
  • Lee Won H , OngS-G , ZhouYet al. Modeling cardiovascular risks of e-cigarettes with human-induced pluripotent stem cell-derived endothelial cells. J. Am. Coll. Cardiol.73(21), 2722–2737 (2019).
  • Le HHT , LiuC-W , DenaroPet al. Genome-wide differential expression profiling of lncRNAs and mRNAs in human induced pluripotent stem cell-derived endothelial cells exposed to e-cigarette extract. Stem Cell Res. Ther.12(1), 593 (2021).
  • Doke SK , DhawaleSC. Alternatives to animal testing: a review. Saudi Pharm. J.23(3), 223–229 (2015).
  • Belair DG , WhislerJA , ValdezJet al. Human vascular tissue models formed from human induced pluripotent stem cell derived endothelial cells. Stem Cell Rev. Rep.11(3), 511–525 (2015).
  • Ong S-B , LeeWH , ShaoN-Yet al. Calpain inhibition restores autophagy and prevents mitochondrial fragmentation in a human iPSC model of diabetic endotheliopathy. Stem Cell Rep.12(3), 597–610 (2019).
  • Patsch C , Challet-MeylanL , ThomaECet al. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat. Cell Biol.17(8), 994–1003 (2015).
  • Torre D , LachmannA , Ma’ayanA. BioJupies: automated generation of interactive notebooks for RNA-seq data analysis in the cloud. Cell Syst.7(5), 556–561 e553 (2018).
  • Chen EY , TanCM , KouYet al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics14(1), 128 (2013).
  • Kuleshov MV , JonesMR , RouillardADet al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res.44(W1), W90–W97 (2016).
  • Chen Y-H , WuY-J , ChenW-Cet al. MEHP interferes with mitochondrial functions and homeostasis in skeletal muscle cells. Biosci. Rep.40(4), BSR20194404 (2020).
  • Muczynski V , LecureuilC , MessiaenSet al. Cellular and molecular effect of MEHP Involving LXRalpha in human fetal testis and ovary. PLOS ONE7(10), e48266 (2012).
  • Tetz LM , ChengAA , KorteCSet al. Mono-2-ethylhexyl phthalate induces oxidative stress responses in human placental cells in vitro. Toxicol. Appl. Pharmacol.268(1), 47–54 (2013).
  • Kuo CH , HsiehCC , KuoHFet al. Phthalates suppress type I interferon in human plasmacytoid dendritic cells via epigenetic regulation. Allergy68(7), 870–879 (2013).
  • Meyer KD , PatilDP , ZhouJet al. 5′ UTR m(6)A promotes cap-independent translation. Cell163(4), 999–1010 (2015).
  • Chen M , WongC-M. The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis. Mol. Cancer19(1), 44 (2020).
  • Li T , HuP-S , ZuoZet al. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol. Cancer18(1), 112 (2019).
  • Jiang H , CaoK , FanC , CuiX , MaY , LiuJ. Transcriptome-wide high-throughput m6A sequencing of differential m6A methylation patterns in the human rheumatoid arthritis fibroblast-like synoviocytes cell line MH7A. J. Inflamm. Res.14, 575–586 (2021).
  • Meeker JD , SathyanarayanaS , SwanSH. Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos. Trans. R. Soc. Lond. B Biol. Sci.364(1526), 2097–2113 (2009).
  • Huang S , QiZ , MaS , LiG , LongC , YuY. A critical review on human internal exposure of phthalate metabolites and the associated health risks. Environ. Pollution279, 116941 (2021).
  • Hauser R , CalafatAM. Phthalates and human health. Occup. Environ. Med.62(11), 806 (2005).
  • Lu X , XuX , LinY , ZhangY , HuoX. Phthalate exposure as a risk factor for hypertension. Environ. Sci. Pollution Res.25(21), 20550–20561 (2018).
  • Mariana M , FeiteiroJ , VerdeI , CairraoE. The effects of phthalates in the cardiovascular and reproductive systems: a review. Environ. Int.94, 758–776 (2016).
  • Campioli E , LauM , PapadopoulosV. Effect of subacute and prenatal DINCH plasticizer exposure on rat dams and male offspring hepatic function: the role of PPAR-α. Environ. Res.179, 108773 (2019).
  • Caldwell JC . DEHP: genotoxicity and potential carcinogenic mechanisms – a review. Mutat. Res. Rev. Mutat. Res.751(2), 82–157 (2012).
  • Jiang X , LiuB , NieZet al. The role of m6A modification in the biological functions and diseases. Signal Transduct. Target. Ther.6(1), 1–16 (2021).
  • Liu X , WangH , ZhaoXet al. Arginine methylation of METTL14 promotes RNA N6-methyladenosine modification and endoderm differentiation of mouse embryonic stem cells. Nat. Commun.12(1), 3780 (2021).
  • Yu F , WeiJ , CuiXet al. Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response. Nucleic Acids Res.49(10), 5779–5797 (2021).
  • Du Y , HouG , ZhangHet al. SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res.46(10), 5195–5208 (2018).
  • Tesauro M , MaurielloA , RovellaVet al. Arterial ageing: from endothelial dysfunction to vascular calcification. J. Intern. Med.281(5), 471–482 (2017).
  • Kataria A , LevineD , WertenteilSet al. Exposure to bisphenols and phthalates and association with oxidant stress, insulin resistance, and endothelial dysfunction in children. Pediatr. Res.81(6), 857–864 (2017).
  • Bai C , LiuL , ChenSet al. Urinary phthalate metabolites and arterial stiffness: a panel study. Environ. Res.207, 112657 (2022).
  • Nardelli TC , ErythropelHC , RobaireB. Toxicogenomic screening of replacements for di(2-ethylhexyl) phthalate (DEHP) using the immortalized TM4 sertoli cell line. PLOS ONE10(10), e0138421 (2015).
  • Roy D , MorganM , YooCet al. Integrated bioinformatics, environmental epidemiologic and genomic approaches to identify environmental and molecular links between endometriosis and breast cancer. Int. J. Mol. Sci.16(10), 25285–25322 (2015).
  • Aryal B , SinghAK , ZhangXet al. Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesis. JCI Insight3(6), e97918 (2018).
  • Aryal B , PriceNL , SuarezY , Fernández-HernandoC. ANGPTL4 in metabolic and cardiovascular disease. Trends Mol. Med.25(8), 723–734 (2019).
  • Meyer KD , SaletoreY , ZumboP , ElementoO , MasonCE , JaffreySR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell149(7), 1635–1646 (2012).
  • Berulava T , BuchholzE , ElerdashviliVet al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur. J. Heart Fail.22(1), 54–66 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.