396
Views
0
CrossRef citations to date
0
Altmetric
Review

DNA Methylation Changes and Inflammaging in Aging-Associated Diseases

ORCID Icon, ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 965-986 | Received 26 Apr 2022, Accepted 04 Aug 2022, Published online: 31 Aug 2022

References

  • Kennedy BK , BergerSL , BrunetAet al. Geroscience: linking aging to chronic disease. Cell159(4), 709–713 (2014).
  • López-Otín C , BlascoMA , PartridgeL , SerranoM , KroemerG. The hallmarks of aging. Cell153(6), 1194–1217 (2013).
  • Lawless C , WangC , JurkD , MerzA , von ZglinickiT , PassosJF. Quantitative assessment of markers for cell senescence. Exp. Gerontol.45(10), 772–778 (2010).
  • Ferrucci L , FabbriE. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol.15(9), 505–522 (2018).
  • Luger K , MäderAW , RichmondRK , SargentDF , RichmondTJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature389(6648), 251–260 (1997).
  • Torres IO , FujimoriDG. Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr. Opin. Struct. Biol.35, 68–75 (2015).
  • Balajee AS , GeardCR. Replication protein A and γ-H2AX foci assembly is triggered by cellular response to DNA double-strand breaks. Exp. Cell Res.300(2), 320–334 (2004).
  • Day K , WaiteLL , Thalacker-MercerAet al. Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol.14(9), R102 (2013).
  • Horvath S . DNA methylation age of human tissues and cell types. Genome Biol.14(10), 1–20 (2013).
  • Horvath S . Erratum to: DNA methylation age of human tissues and cell types. Genome Biol.16(1), 1–5 (2015).
  • Candore G , CarusoC , JirilloE , MagroneT , VastoS. Low grade inflammation as a common pathogenetic denominator in age-related diseases: novel drug targets for anti-ageing strategies and successful ageing achievement. Curr. Pharm. Des.16(6), 584–596 (2010).
  • Sanada F , TaniyamaY , MuratsuJet al. Source of chronic inflammation in aging. Front. Cardiovasc. Med.5, 12 (2018).
  • Melzer D , PillingLC , FerrucciL. The genetics of human ageing. Nat. Rev. Genet.21(2), 88–101 (2020).
  • Ferrucci L , SembaRD , GuralnikJMet al. Proinflammatory state, hepcidin, and anemia in older persons. Blood115(18), 3810–3816 (2010).
  • Fulop T , LarbiA , DupuisGet al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front. Immunol. 8, 1960 (2018).
  • Lehallier B , GateD , SchaumNet al. Undulating changes in human plasma proteome profiles across the lifespan. Nat. Med.25(12), 1843–1850 (2019).
  • Cohen HJ , PieperCF , HarrisT , RaoKMK , CurrieMS. The association of plasma IL-6 levels with functional disability in community-dwelling elderly. J. Gerontol. A Biol. Sci. Med. Sci.52(4), M201–M208 (1997).
  • Newman AB , SandersJL , KizerJRet al. Trajectories of function and biomarkers with age: the CHS All Stars Study. Int. J. Epidemiol.45(4), 1135–1145 (2016).
  • Gerli R , MontiD , BistoniOet al. Chemokines, sTNF-Rs and sCD30 serum levels in healthy aged people and centenarians. Mech. Ageing Dev.121(1–3), 37–46 (2001).
  • Franceschi C , GaragnaniP , VitaleG , CapriM , SalvioliS. Inflammaging and ‘Garb-aging’. Trends Endocrinol. Metab.28(3), 199–212 (2017).
  • Xia S , ZhangX , ZhengSet al. An update on inflamm-aging: mechanisms, prevention, and treatment. J. Immunol. Res.2016, 8426874 (2016).
  • Baylis D , BartlettDB , PatelHP , RobertsHC. Understanding how we age: insights into inflammaging. Longev. Healthspan2(1), 1–8 (2013).
  • Zabransky DJ , JaffeeEM , WeeraratnaAT. Shared genetic and epigenetic changes link aging and cancer. Trends Cell Biol.32(4), 338–350 (2022).
  • Frasca D , BlombergBB. Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology17(1), 7–19 (2016).
  • Liu F , WuS , RenH , GuJ. Klotho suppresses RIG-I-mediated senescence-associated inflammation. Nature Cell Biol.13(3), 254–262 (2011).
  • De Cecco M , ItoT , PetrashenAPet al. LINE-1 derepression in senescent cells triggers interferon and inflammaging. Nature566(7742), 73–78 (2019).
  • Acosta JC , BanitoA , WuestefeldTet al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol.15(8), 978–990 (2013).
  • Muñoz-Espín D , SerranoM. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol.15(7), 482–496 (2014).
  • Acosta JC , O’LoghlenA , BanitoAet al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell133(6), 1006–1018 (2008).
  • Lujambio A , AkkariL , SimonJet al. Non-cell-autonomous tumor suppression by p53. Cell153(2), 449–460 (2013).
  • Baker DJ , WijshakeT , TchkoniaTet al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature479(7372), 232–236 (2011).
  • Balistreri CR , CandoreG , AccardiG , Colonna-RomanoG , LioD. NF-κB pathway activators as potential ageing biomarkers: targets for new therapeutic strategies. Immun. Ageing10(1), 24 (2013).
  • Prattichizzo F , MicolucciL , CriccaMet al. Exosome-based immunomodulation during aging: a nano-perspective on inflamm-aging. Mech. Ageing Dev.168, 44–53 (2017).
  • Ovadya Y , KrizhanovskyV. Senescent cells: SASPected drivers of age-related pathologies. Biogerontology15(6), 627–642 (2014).
  • Weilner S , SchramlE , WieserMet al. Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells. Aging Cell15(4), 744–754 (2016).
  • Weilner S , KeiderV , WinterMet al. Vesicular galectin-3 levels decrease with donor age and contribute to the reduced osteo-inductive potential of human plasma derived extracellular vesicles. Aging (Albany NY).8(1), 16–33 (2016).
  • Ruparelia N , ChaiJT , FisherEA , ChoudhuryRP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat. Rev. Cardiol.14(3), 133–144 (2017).
  • Leonardi GC , AccardiG , MonasteroR , NicolettiF , LibraM. Ageing: from inflammation to cancer. Immun. Ageing15(1), 1–7 (2018).
  • Salimi S , ShardellMD , SeligerSL , BandinelliS , GuralnikJM , FerrucciL. Inflammation and trajectory of renal function in community-dwelling older adults. J. Am. Geriatr. Soc.66(4), 804–811 (2018).
  • Hodes RJ , SierraF , AustadSNet al. Disease drivers of aging. Ann. NY Acad. Sci.1386(1), 45–68 (2016).
  • Smith AJ , HumphriesSE. Cytokine and cytokine receptor gene polymorphisms and their functionality. Cytokine Growth Factor Rev.20(1), 43–59 (2009).
  • Rafiq S , StevensK , HurstAet al. Common genetic variation in the gene encoding interleukin-1-receptor antagonist (IL-1RA) is associated with altered circulating IL-1RA levels. Genes Immunity8(4), 344–351 (2007).
  • Herder C , NuotioM-L , ShahSet al. Genetic determinants of circulating interleukin-1 receptor antagonist levels and their association with glycemic traits. Diabetes63(12), 4343–4359 (2014).
  • Wu X , KondraguntaV , KornmanKet al. IL-1 receptor antagonist gene as a predictive biomarker of progression of knee osteoarthritis in a population cohort. Osteoarthritis Cartilage21(7), 930–938 (2013).
  • Dai L , LiuD , GuoH , WangY , BaiY. Association between polymorphism in the promoter region of interleukin 6 (-174 G/C) and risk of Alzheimer’s disease: a meta-analysis. J. Neurol.259(3), 414–419 (2012).
  • Hou H , WangC , SunF , ZhaoL , DunA , SunZ. Association of interleukin-6 gene polymorphism with coronary artery disease: an updated systematic review and cumulative meta-analysis. Inflamm. Res.64(9), 707–720 (2015).
  • Frasca D , BlombergBB , PaganelliR. Aging, obesity, and inflammatory age-related diseases. Front. Immunol.8, 1745 (2017).
  • Rocha VZ , LibbyP. Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol.6(6), 399–409 (2009).
  • Vandanmagsar B , YoumY-H , RavussinAet al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med.17(2), 179–188 (2011).
  • McGeer EG , McGeerPL. Inflammatory processes in Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry27(5), 741–749 (2003).
  • McGeer PL , McGeerEG. Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat. Disord.10, S3–S7 (2004).
  • Jeck WR , SieboldAP , SharplessNE. A meta-analysis of GWAS and age-associated diseases. Aging Cell11(5), 727–731 (2012).
  • Johnson SC , DongX , VijgJ , SuhY. Genetic evidence for common pathways in human age-related diseases. Aging Cell14(5), 809–817 (2015).
  • Lio D , ScolaL , CrivelloAet al. Inflammation, genetics, and longevity: further studies on the protective effects in men of IL-10 –1082 promoter SNP and its interaction with TNF-α –308 promoter SNP. J. Med. Genet.40(4), 296–299 (2003).
  • Grimaldi MP , VastoS , BalistreriCRet al. Genetics of inflammation in age-related atherosclerosis: its relevance to pharmacogenomics. Ann. NY Acad. Sci.1100(1), 123–131 (2007).
  • Chung HY , CesariM , AntonSet al. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res. Rev.8(1), 18–30 (2009).
  • Chung HY , SungB , JungKJ , ZouY , YuBP. The molecular inflammatory process in aging. Antioxid. Redox Signal.8(3–4), 572–581 (2006).
  • Chung HY , KimDH , LeeEKet al. Redefining chronic inflammation in aging and age-related diseases: proposal of the senoinflammation concept. Aging Dis.10(2), 367–382 (2019).
  • Rea IM , GibsonDS , McGilliganV , McNerlanSE , AlexanderHD , RossOA. Age and age-related diseases: role of inflammation triggers and cytokines. Front. Immunol.9, 586 (2018).
  • Ruan Q , QianF , YuZ. Effects of polymorphisms in immunity-related genes on the immune system and successful aging. Curr. Opin. Immunol.29, 49–55 (2014).
  • Minciullo PL , CatalanoA , MandraffinoGet al. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch. Immunol. Ther. Exp. (Warsz.)64(2), 111–126 (2016).
  • Sims JE , SmithDE. The IL-1 family: regulators of immunity. Nat. Rev. Immunol.10(2), 89–102 (2010).
  • Mun M-J , KimJ-H , ChoiJ-Y , JangW-C. Genetic polymorphisms of interleukin genes and the risk of Alzheimer’s disease: an update meta-analysis. Meta Gene8, 1–10 (2016).
  • Trompet S , DeCraen A , SlagboomPet al. Genetic variation in the interleukin-1β-converting enzyme associates with cognitive function. The PROSPER study. Brain131(4), 1069–1077 (2008).
  • Langdahl BL , LøkkeE , CarstensM , StenkjærLL , EriksenEF. Osteoporotic fractures are associated with an 86-base pair repeat polymorphism in the interleukin-1-receptor antagonist gene but not with polymorphisms in the interleukin-1β gene. J. Bone Miner. Res.15(3), 402–414 (2000).
  • Cederholm T , PerssonM , AnderssonPet al. Polymorphisms in cytokine genes influence long-term survival differently in elderly male and female patients. J. Intern. Med.262(2), 215–223 (2007).
  • Cavallone L , BonafeM , OlivieriFet al. The role of IL-1 gene cluster in longevity: a study in Italian population. Mech. Ageing Dev.124(4), 533–538 (2003).
  • Maggio M , GuralnikJM , LongoDL , FerrucciL. Interleukin-6 in aging and chronic disease: a magnificent pathway. J. Gerontol. A Biol. Sci. Med. Sci.61(6), 575–584 (2006).
  • Spoto B , Mattace-RasoF , SijbrandsEet al. Association of IL-6 and a functional polymorphism in the IL-6 gene with cardiovascular events in patients with CKD. Clin. J. Am. Soc. Nephrol.10(2), 232–240 (2015).
  • Davies R , ChoyE. Clinical experience of IL-6 blockade in rheumatic diseases – implications on IL-6 biology and disease pathogenesis. Semin. Immunol.. 26(1), 97–104 (2014).
  • Consortium I-RMRA . The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet379(9822), 1214–1224 (2012).
  • Conte M , MartucciM , ChiarielloA , FranceschiC , SalvioliS. Mitochondria, immunosenescence and inflammaging: a role for mitokines?Semin. Immunopathol.42(5), 607–617 (2020).
  • Bruunsgaard H , LadelundS , PedersenAN , SchrollM , JørgensenT , PedersenB. Predicting death from tumour necrosis factor-alpha and interleukin-6 in 80-year-old people. Clin. Exp. Immunol.132(1), 24–31 (2003).
  • Bruunsgaard H , Andersen-RanbergK , HjelmborgJvB , PedersenBK , JeuneB. Elevated levels of tumor necrosis factor alpha and mortality in centenarians. Am. J. Med.115(4), 278–283 (2003).
  • Khabour OF , BarnawiJ. Association of longevity with IL-10 –1082 G/A and TNF-α –308 G/A polymorphisms. Int. J. Immunogenet.37(4), 293–298 (2010).
  • Shamim D , LaskowskiM. Inhibition of inflammation mediated through the tumor necrosis factor α biochemical pathway can lead to favorable outcomes in Alzheimer disease. J. Cent. Nerv. Syst. Dis.9, 1179573517722512 (2017).
  • Vasto S , CarrubaG , LioDet al. Inflammation, ageing and cancer. Mech. Ageing Dev.130(1–2), 40–45 (2009).
  • Ribeiro H , RodriguesI , NapoleãoLet al. Non-steroidal anti-inflammatory drugs (NSAIDs), pain and aging: a djusting prescription to patient features. Biomed. Pharmacother.150, 112958 (2022).
  • Stromsnes K , CorreasAG , LehmannJ , GambiniJ , Olaso-GonzalezG. Anti-inflammatory properties of diet: role in healthy aging. Biomedicines9(8), 922 (2021).
  • D’Aquila P , RoseG , BellizziD , PassarinoG. Epigenetics and aging. Maturitas74(2), 130–136 (2013).
  • Zhang W , SongM , QuJ , LiuG-H. Epigenetic modifications in cardiovascular aging and diseases. Circ. Res.123(7), 773–786 (2018).
  • Gonzalo S . Epigenetic alterations in aging. J. Appl. Physiol.109(2), 586–597 (2010).
  • Pal S , TylerJK. Epigenetics and aging. Sci. Adv.2(7), e1600584 (2016).
  • Fraga MF , EstellerM. Epigenetics and aging: the targets and the marks. Trends Genet.23(8), 413–418 (2007).
  • Jasiulionis MG . Abnormal epigenetic regulation of immune system during aging. Front. Immunol.9, 197 (2018).
  • Zjablovskaja P , FlorianMC. Acute myeloid leukemia: aging and epigenetics. Cancers12(1), 103 (2019).
  • Newell-Price J , ClarkAJ , KingP. DNA methylation and silencing of gene expression. Trends Endocrinol. Metab.11(4), 142–148 (2000).
  • Vaiserman A , PasyukovaEG. Epigenetic drugs: a novel anti-aging strategy?Front. Genet.3, 2242012).
  • Mohd Murshid N , AminullahLubis F , MakpolS. Epigenetic changes and its intervention in age-related neurodegenerative diseases. Cell. Mol. Neurobiol.42(3), 577–595 (2020).
  • Richardson B . Impact of aging on DNA methylation. Ageing Res. Rev.2(3), 245–261 (2003).
  • Unnikrishnan A , FreemanWM , JacksonJ , WrenJD , PorterH , RichardsonA. The role of DNA methylation in epigenetics of aging. Pharmacol. Ther.195, 172–185 (2019).
  • Xiao F-H , WangH-T , KongQ-P. Dynamic DNA methylation during aging: a‘prophet’ of age-related outcomes. Front. Genet.10, 107 (2019).
  • Salameh Y , BejaouiY , ElHajj N. DNA methylation biomarkers in aging and age-related diseases. Front. Genet.11, 171 (2020).
  • Ciccarone F , TagliatestaS , CaiafaP , ZampieriM. DNA methylation dynamics in aging: how far are we from understanding the mechanisms?Mech. Ageing Dev.174, 3–17 (2018).
  • Jung M , PfeiferGP. Aging and DNA methylation. BMC Biol.13(1), 1–8 (2015).
  • Zhang W , QuJ , LiuG-H , BelmonteJCI. The ageing epigenome and its rejuvenation. Nat. Rev. Mol. Cell Biol.21(3), 137–150 (2020).
  • Calvanese V , LaraE , KahnA , FragaMF. The role of epigenetics in aging and age-related diseases. Ageing Res. Rev.8(4), 268–276 (2009).
  • Casillas MA , LopatinaN , AndrewsLG , TollefsbolTO. Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically-transformed human fibroblasts. Mol. Cell. Biochem.252(1), 33–43 (2003).
  • So K , TamuraG , HondaTet al. Quantitative assessment of RUNX3 methylation in neoplastic and non-neoplastic gastric epithelia using a DNA microarray. Pathol. Int.56(10), 571–575 (2006).
  • Madrigano J , BaccarelliAA , MittlemanMAet al. Aging and epigenetics: longitudinal changes in gene-specific DNA methylation. Epigenetics7(1), 63–70 (2012).
  • Bollati V , SchwartzJ , WrightRet al. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech. Ageing Dev.130(4), 234–239 (2009).
  • Ligthart S , MarziC , AslibekyanSet al. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol.17(1), 1–15 (2016).
  • Stevenson AJ , McCartneyDL , HillaryRFet al. Characterisation of an inflammation-related epigenetic score and its association with cognitive ability. Clin. Epigenetics12(1), 1–11 (2020).
  • Conole EL , StevensonAJ , ManiegaSMet al. DNA methylation and protein markers of chronic inflammation and their associations with brain and cognitive aging. Neurology97(23), e2340–e2352 (2021).
  • Saul D , KosinskyRL. Epigenetics of aging and aging-associated diseases. Int. J. Mol. Sci.22(1), 401 (2021).
  • Perwez Hussain S , HarrisCC. Inflammation and cancer: an ancient link with novel potentials. Int. J. Cancer121(11), 2373–2380 (2007).
  • Xu B , NiuX-B , WangZ-Det al. IL-6 –174G>C polymorphism and cancer risk: a meta-analysis involving 29,377 cases and 37,739 controls. Mol. Biol. Rep.38(4), 2589–2596 (2011).
  • Borges ÁH , SilverbergMJ , WentworthDet al. Predicting risk of cancer during HIV infection: the role of inflammatory and coagulation biomarkers. AIDS (London)27(9), 1433 (2013).
  • Alimohammadi M , RahimiA , FaramarziFet al. Effects of coenzyme Q10 supplementation on inflammation, angiogenesis, and oxidative stress in breast cancer patients: a systematic review and meta-analysis of randomized controlled-trials. Inflammopharmacology29(3), 579–593 (2021).
  • Grivennikov SI , GretenFR , KarinM. Immunity, inflammation, and cancer. Cell140(6), 883–899 (2010).
  • Hahn MA , HahnT , LeeD-Het al. Methylation of polycomb target genes in intestinal cancer is mediated by inflammation. Cancer Res.68(24), 10280–10289 (2008).
  • Alimohammadi M , RahimiA , FaramarziF , Alizadeh-NavaeiR , RafieiA. Overexpression of chemokine receptor CXCR4 predicts lymph node metastatic risk in patients with melanoma: asystematic review and meta-analysis. Cytokine148, 155691 (2021).
  • Hartnett L , EganLJ. Inflammation, DNA methylation and colitis-associated cancer. Carcinogenesis33(4), 723–731 (2012).
  • Abu-Remaileh M , BenderS , RaddatzGet al. Chronic inflammation induces a novel epigenetic program that is conserved in intestinal adenomas and in colorectal cancer. Cancer Res.75(10), 2120–2130 (2015).
  • Ueda Y , AndoT , NanjoS , UshijimaT , SugiyamaT. DNA methylation of microRNA-124a is a potential risk marker of colitis-associated cancer in patients with ulcerative colitis. Dig. Dis. Sci.59(10), 2444–2451 (2014).
  • Richardson BC . Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. J. Nutr.132(8), S2401–S2405 (2002).
  • Franco R , SchoneveldO , GeorgakilasAG , PanayiotidisMI. Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett.266(1), 6–11 (2008).
  • Tasdemir N , BanitoA , RoeJ-Set al. BRD4 c onnects enhancer remodeling to senescence immune surveilla nce. Cancer Discov.6(6), 612–629 (2016).
  • Takahashi A , ImaiY , YamakoshiKet al. DNA damage signaling triggers degradation of histone methyltransferases through APC/CCDH1 in senescent cells. Mol. Cell45(1), 123–131 (2012).
  • Chen H , RuizPD , McKimpsonWM , NovikovL , KitsisRN , GambleMJ. MacroH2A1 and ATM play opposing roles in paracrine senescence and the senescence-associated secretory phenotype. Mol. Cell59(5), 719–731 (2015).
  • Contrepois K , CoudereauC , BenayounBAet al. Histone variant H2A.J accumulates in senescent cells and promotes inflammatory gene expression. Nat. Commun.8, 14995 (2017).
  • Laird PW . The power and the promise of DNA methylation markers. Nat. Rev. Cancer3(4), 253–266 (2003).
  • Cowey CL , RathmellWK. VHL gene mutations in renal cell carcinoma: role as a biomarker of disease outcome and drug efficacy. Curr. Oncol. Reports11(2), 94–101 (2009).
  • Nebbioso A , TambaroFP , Dell’AversanaC , AltucciL. Cancer epigenetics: moving forward. PLOS Genet.14(6), e1007362 (2018).
  • Baylin SB , JonesPA. A decade of exploring the cancer epigenome – biological and translational implications. Nat. Rev. Cancer11(10), 726–734 (2011).
  • Flavahan WA , GaskellE , BernsteinBE. Epigenetic plasticity and the hallmarks of cancer. Science357(6348), eaal2380 (2017).
  • Singh AA , MandoliA , PrangeKH , LaaksoM , MartensJH. AML associated oncofusion proteins PML-RARA, AML1-ETO and CBFB-MYH11 target RUNX/ETS-factor binding sites to modulate H3ac levels and drive leukemogenesis. Oncotarget8(8), 12855 (2017).
  • Nishida N , NagasakaT , NishimuraT , IkaiI , BolandCR , GoelA. Aberrant methylation of multiple tumor suppressor genes in aging liver, chronic hepatitis, and hepatocellular carcinoma. Hepatology47(3), 908–918 (2008).
  • Issa J-P . Aging and epigenetic drift: a vicious cycle. J. Clin. Invest.124(1), 24–29 (2014).
  • Teschendorff AE , MenonU , Gentry-MaharajAet al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res.20(4), 440–446 (2010).
  • Mozhui K , PandeyAK. Conserved effect of aging on DNA methylation and association with EZH2 polycomb protein in mice and humans. Mech. Ageing Dev.162, 27–37 (2017).
  • Ohm JE , McGarveyKM , YuXet al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet.39(2), 237–242 (2007).
  • Widschwendter M , FieglH , EgleDet al. Epigenetic stem cell signature in cancer. Nat. Genet.39(2), 157–158 (2007).
  • Klutstein M , NejmanD , GreenfieldR , CedarH. DNA Methylation in Cancer and AgingProgramming of DNA Methylation in Cancer and Aging. Cancer Res.76(12), 3446–3450 (2016).
  • Schlesinger Y , StraussmanR , KeshetIet al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat. Genet.39(2), 232–236 (2007).
  • Viré E , BrennerC , DeplusRet al. The polycomb group protein EZH2 directly controls DNA methylation. Nature439(7078), 871–874 (2006).
  • Okugawa Y , GradyWM , GoelA. Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology149(5), 1204–25.e12 (2015).
  • Lao VV , GradyWM. Epigenetics and colorectal cancer. Nat. Rev. Gastroenterol. Hepatol.8(12), 686–700 (2011).
  • Guo Y , WangM , JiaX , ZhuH , ZhiY , YuanL. Wnt signaling pathway upregulates DNMT1 to trigger NHERF1 promoter hypermethylation in colon cancer. Oncol. Rep.40(2), 1165–1173 (2018).
  • Yung R , RayD , EisenbraunJKet al. Unexpected effects of a heterozygous DNMT1 null mutation on age-dependent DNA hypomethylation and autoimmunity. J. Gerontol. A Biol. Sci. Med. Sci.56(6), B268–B276 (2001).
  • Hsieh CJ , KlumpB , HolzmannK , BorchardF , GregorM , PorschenR. Hypermethylation of the p16INK4a promoter in colectomy specimens of patients with long-standing and extensive ulcerative colitis. Cancer Res.58(17), 3942–3945 (1998).
  • Yang Z-H , DangY-Q , JiG. Role of epigenetics in transformation of inflammation into colorectal cancer. World J. Gastroenterol.25(23), 2863 (2019).
  • Foran E , Garrity-ParkMM , MureauCet al. Upregulation of DNA methyltransferase-mediated gene silencing, anchorage-independent growth, and migration of colon cancer cells by interleukin-6. Mol. Cancer Res.8(4), 471–481 (2010).
  • Nelson WG , DeMarzo AM , DeWeeseTL , IsaacsWB. The role of inflammation in the pathogenesis of prostate cancer. J. Urol.172(5), S6–S12 (2004).
  • Yasmin R , SirajS , HassanA , KhanAR , AbbasiR , AhmadN. Epigenetic regulation of inflammatory cytokines and associated genes in human malignancies. Mediators Inflamm.2015, 201703 (2015).
  • Ianni M , PorcelliniE , CarboneIet al. Genetic factors regulating inflammation and DNA methylation associated with prostate cancer. Prostate Cancer Prostatic Dis.16(1), 56–61 (2013).
  • Jiménez-Garza O , BaccarelliA , ByunH-M , BartolucciGB , CarrieriM. Gene-specific DNA methylation as a valuable tool for risk assessment: the case of occupational exposure to different VOCs in Mexican workers. Occup. Environ. Med.71(Suppl. 1), A36–A (2014).
  • Bollati V , BaccarelliA , HouLet al. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res.67(3), 876–880 (2007).
  • Hou L , ZhangX , TarantiniLet al. Ambient PM exposure and DNA methylation in tumor suppressor genes: a cross-sectional study. Part. Fibre Toxicol.8, 25 (2011).
  • Patel SA , BhambraU , CharalambousMPet al. Interleukin-6 mediated upregulation of CYP1B1 and CYP2E1 in colorectal cancer involves DNA methylation, miR27b and STAT3. Br. J. Cancer111(12), 2287–2296 (2014).
  • Song T-Y , LimJ , KimB , HanJ-W , YounH-D , ChoE-J. The role of tumor suppressor menin in IL-6 regulation in mouse islet tumor cells. Biochem. Biophys. Res. Commun.451(2), 308–313 (2014).
  • O’Hagan HM , WangW , SenSet al. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell20(5), 606–619 (2011).
  • Yuan J , ZhangF , NiuR. Multiple regulation pathways and pivotal biological functions of STAT3 in cancer. Sci. Rep.5, 17663 (2015).
  • Kwok JB . Role of epigenetics in Alzheimer’s and Parkinson’s disease. Epigenomics2(5), 671–682 (2010).
  • Fuso A . The ‘golden age’ of DNA methylation in neurodegenerative diseases. Clin. Chem. Lab. Med.51(3), 523–534 (2013).
  • Chestnut BA , ChangQ , PriceA , LesuisseC , WongM , MartinLJ. Epigenetic regulation of motor neuron cell death through DNA methylation. J. Neurosci.31(46), 16619–16636 (2011).
  • Wang S-C , OelzeB , SchumacherA. Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLOS ONE3(7), e2698 (2008).
  • Suzuki MM , BirdA. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet.9(6), 465–476 (2008).
  • Mastroeni D , McKeeA , GroverA , RogersJ , ColemanPD. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLOS ONE4(8), e6617 (2009).
  • Salcedo-Tacuma D , MelgarejoJD , MahechaMFet al. Differential methylation levels in CpGs of the BIN1 gene in individuals with Alzheimer disease. Alzheimer Dis. Assoc. Disord.33(4), 321–326 (2019).
  • McGeer PL , McGeerEG. Inflammation and the degenerative diseases of aging. Ann. NY Acad. Sci.1035(1), 104–116 (2004).
  • Rubio-Perez JM , Morillas-RuizJM. A review: inflammatory process in Alzheimer’s disease, role of cytokines. Sci. World J.2012, 756357 (2012).
  • McGeer PL , McGeerEG. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Rev.21(2), 195–218 (1995).
  • López-González I , SchlüterA , AsoEet al. Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J. Neuropathol. Exp. Neurol.74(4), 319–344 (2015).
  • Kaut O , RamirezA , PieperH , SchmittI , JessenF , WüllnerU. DNA methylation of the TNF-α promoter region in peripheral blood monocytes and the cortex of human Alzheimer’s disease patients. Dement. Geriatr. Cogn. Disord.38(1–2), 10–15 (2014).
  • Bette M , KautO , SchäferMKH , WeiheE. Constitutive expression of p55TNFR mRNA and mitogen-specific up-regulation of TNFα and p75TNFR mRNA in mouse brain. J. Comp. Neurol.465(3), 417–430 (2003).
  • Nadeau S , RivestS. Role of microglial-derived tumor necrosis factor in mediating CD14 transcription and nuclear factor κB activity in the brain during endotoxemia. J. Neurosci.20(9), 3456–3468 (2000).
  • Srivastava R , KalitaJ , KhanMY , MisraUK. Status of proinflammatory and anti-inflammatory cytokines in different brain regions of a rat model of Japanese encephalitis. Inflamm. Res.61(4), 381–389 (2012).
  • Zhao M , CribbsDH , AndersonAJet al. The induction of the TNFα death domain signaling pathway in Alzheimer’s disease brain. Neurochem. Res.28(2), 307–318 (2003).
  • Chouliaras L , MastroeniD , DelvauxEet al. Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiol. Aging34(9), 2091–2099 (2013).
  • Pieper HC , EvertBO , KautO , RiedererPF , WahaA , WüllnerU. Different methylation of the TNF-alpha promoter in cortex and substantia nigra: implications for selective neuronal vulnerability. Neurobiol. Dis.32(3), 521–527 (2008).
  • Comb M , GoodmanHM. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res.18(13), 3975–3982 (1990).
  • Takashiba S , ShapiraL , AmarS , Van DykeTE. Cloning and characterization of human TNFα promoter region. Gene131(2), 307–308 (1993).
  • Hirsch E , BreidertT , RousseletE , HunotS , HartmannA , MichelP. The role of dial reaction and inflammation in Parkinson’s disease. DOCUMENTATION PAGE.991, 214–228 (2003).
  • Ferger B , LengA , MuraA , HengererB , FeldonJ. Genetic ablation of tumor necrosis factor-alpha (TNF-α) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J. Neurochem.89(4), 822–833 (2004).
  • Sriram K , MathesonJM , BenkovicSA , MillerDB , LusterMI , O’CallaghanJP. Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-α1. FASEB J.20(6), 670–682 (2006).
  • Sriram K , MathesonJM , BenkovicSA , MillerDB , LusterMI , O’CallaghanJP. Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson’s disease. FASEB J.16(11), 1474–1476 (2002).
  • Hansson GK , RobertsonA-KL , Söderberg-NauclérC. Inflammation and atherosclerosis. Annu. Rev. Pathol. Mech. Dis.1, 297–329 (2006).
  • Post WS , Goldschmidt-ClermontPJ , WilhideCCet al. Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc. Res.43(4), 985–991 (1999).
  • Zawadzki C , ChatelainN , DelestreMet al. Tissue factor pathway inhibitor-2 gene methylation is associated with low expression in carotid atherosclerotic plaques. Atherosclerosis204(2), e4–e14 (2009).
  • Sharma P , KumarJ , GargGet al. Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol.27(7), 357–365 (2008).
  • Stenvinkel P , KarimiM , JohanssonSet al. Impact of inflammation on epigenetic DNA methylation – a novel risk factor for cardiovascular disease? J. Intern. Med. 261(5), 488–499 (2007).
  • Zhang Y , ZengC. Role of DNA methylation in cardiovascular diseases. Clin. Exp. Hypertens.38(3), 261–267 (2016).
  • Wilson AG . Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases. J. Periodontol.79, 1514–1519 (2008).
  • Armenante F , MerolaM , FuriaA , PalmieriM. Repression of the IL-6 gene is associated with hypermethylation. Biochem. Biophys. Res. Commun.258(3), 644–647 (1999).
  • Hodge DR , XiaoW , ClausenPA , HeideckerG , SzyfM , FarrarWL. Interleukin-6 regulation of the human DNA methyltransferase (HDNMT) gene in human erythroleukemia cells. J. Biol. Chem.276(43), 39508–39511 (2001).
  • Hodge DR , PengB , CherryJCet al. Interleukin 6 supports the maintenance of p53 tumor suppressor gene promoter methylation. Cancer Res.65(11), 4673–4682 (2005).
  • Galm O , YoshikawaH , EstellerM , OsiekaR , HermanJG. SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood101(7), 2784–2788 (2003).
  • Hansson GK . Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med.352(16), 1685–1695 (2005).
  • Sakaguchi S . Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol.6(4), 345–352 (2005).
  • Baron U , FloessS , WieczorekGet al. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells. Eur. J. Immunol.37(9), 2378–2389 (2007).
  • Floess S , FreyerJ , SiewertCet al. Epigenetic control of the FOXP3 locus in regulatory T cells. PLoS Biol.5(2), e38 (2007).
  • George J . Mechanisms of disease: the evolving role of regulatory T cells in atherosclerosis. Nat. Clin. Pract. Cardiovasc. Med.5(9), 531–540 (2008).
  • Huehn J , PolanskyJK , HamannA. Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage?Nat. Rev. Immunol.9(2), 83–89 (2009).
  • Lal G , ZhangN , VanDer Touw Wet al. Epigenetic regulation of FOXP3 expression in regulatory T cells by DNA methylation. J. Immunol.182(1), 259–273 (2009).
  • Stockis J , FinkW , FrançoisVet al. Comparison of stable human Treg and Th clones by transcriptional profiling. Eur. J. Immunol.39(3), 869–882 (2009).
  • Wieczorek G , AsemissenA , ModelFet al. Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res.69(2), 599–608 (2009).
  • De Vries IJM , CastelliC , HuygensCet al. Frequency of circulating Tregs with demethylated FOXP3 intron 1 in melanoma patients receiving tumor vaccines and potentially Treg-depleting agents. Clin. Cancer Res.17(4), 841–848 (2011).
  • Taghadosi M , BilvayehS , GhaffariS , IranshahiN , EsfandiariA , ZafariP. The correlation between plasma levels of vitamin D and epigenetic alterations of Treg-specific demethylated region (TSDR) in rheumatoid arthritis patients. Acta Med. Iranica57(6), 342–347 (2019).
  • Wren JD , GarnerHR. Data-mining analysis suggests an epigenetic pathogenesis for type 2 diabetes. J. Biomed. Biotechnol.2005(2), 104–112 (2005).
  • Petersen A-K , ZeilingerS , KastenmüllerGet al. Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum. Mol. Genet.23(2), 534–545 (2014).
  • Dayeh T , VolkovP , SalöSet al. Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet.10(3), e1004160 (2014).
  • Ling C , DelGuerra S , LupiRet al. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia51(4), 615–622 (2008).
  • Bacos K , GillbergL , VolkovPet al. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat. Commun.7, 11089 (2016).
  • VanderJagt TA , NeugebauerMH , MorganM , BowdenDW , ShahVO. Epigenetic profiles of pre-diabetes transitioning to type 2 diabetes and nephropathy. World J. Diabetes6(9), 1113–1121 (2015).
  • Wang X , BaoW , LiuJet al. Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care36(1), 166–175 (2013).
  • Nilsson E , JanssonPA , PerfilyevAet al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes.63(9), 2962–2976 (2014).
  • Guénard F , DeshaiesY , CianfloneK , KralJG , MarceauP , VohlM-C. Differential methylation in glucoregulatory genes of offspring born before vs after maternal gastrointestinal bypass surgery. Proc. Natl Acad. Sci. USA110(28), 11439–11444 (2013).
  • Guénard F , TchernofA , DeshaiesYet al. Methylation and expression of immune and inflammatory genes in the offspring of bariatric bypass surgery patients. J. Obesity2013, 492170 (2013).
  • Berglind D , MüllerP , WillmerMet al. Differential methylation in inflammation and type 2 diabetes genes in siblings born before and after maternal bariatric surgery. Obesity24(1), 250–261 (2016).
  • Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet.13(7), 484–492 (2012).
  • Barres R , KirchnerH , RasmussenMet al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep.3(4), 1020–1027 (2013).
  • Kirchner H , NylenC , LaberSet al. Altered promoter methylation of PDK4, IL1B, IL6, and TNF after Roux-en Y gastric bypass. Surg. Obes. Relat. Dis.10(4), 671–678 (2014).
  • McCarthy DA , ClarkRR , BartlingTR , TrebakM , MelendezJA. Redox control of the senescence regulator interleukin-1α and the secretory phenotype. J. Biol. Chem.288(45), 32149–32159 (2013).
  • Childs BG , DurikM , BakerDJ , Van DeursenJM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med.21(12), 1424–1435 (2015).
  • Palmer AK , TchkoniaT , LeBrasseurNK , ChiniEN , XuM , KirklandJL. Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes64(7), 2289–2298 (2015).
  • Kassan M , ChoiSK , GalánMet al. Enhanced NF-κB activity impairs vascular function through PARP-1–, SP-1–, and COX-2–dependent mechanisms in type 2 diabetes. Diabetes.62(6), 2078–2087 (2013).
  • Cooper ME , El-OstaA. Epigenetics: mechanisms and implications for diabetic complications. Circ. Res.107(12), 1403–1413 (2010).
  • Prattichizzo F , GiulianiA , CekaAet al. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin. Epigenetics7(1), 56 (2015).
  • Toperoff G , AranD , KarkJDet al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum. Mol. Genet.21(2), 371–383 (2012).
  • Toperoff G , KarkJD , AranDet al. Premature aging of leukocyte DNA methylation is associated with type 2 diabetes prevalence. Clin. Epigenetics7(1), 35 (2015).
  • van Otterdijk SD , BinderAM , Szarcvel Szic K , SchwaldJ , MichelsKB. DNA methylation of candidate genes in peripheral blood from patients with type 2 diabetes or the metabolic syndrome. PLOS ONE12(7), e0180955 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.