1,528
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Methylation status of VTRNA2-1/nc886 is stable across populations, monozygotic twin pairs and in majority of tissues

ORCID Icon, , , , , , , , , , , , , , , , , , , , & ORCID Icon show all
Pages 1105-1124 | Received 27 Jun 2022, Accepted 08 Sep 2022, Published online: 05 Oct 2022

References

  • Reik W , WalterJ. Genomic imprinting: parental influence on the genome. Nat. Rev. Genet.2(1), 21–32 (2001).
  • Lucifero D , MannMRW , BartolomeiMS , TraslerJM. Gene-specific timing and epigenetic memory in oocyte imprinting. Hum. Mol. Genet.13(8), 839–849 (2004).
  • Smallwood SA , KelseyG. De novo DNA methylation: a germ cell perspective. Trends Genet.28(1), 33–42 (2012).
  • Lees-Murdock DJ , WalshCP. DNA methylation reprogramming in the germ line. Epigenetics3(1), 5–13 (2008).
  • Hudson Q , KulinskiT , HuetterS , BarlowD. Genomic imprinting mechanisms in embryonic and extraembryonic mouse tissues. Heredity105(1), 45–56 (2010).
  • Baran Y , SubramaniamM , BitonAet al. The landscape of genomic imprinting across diverse adult human tissues. Genome Res.25(7), 927–936 (2015).
  • Sanchez-Delgado M , CourtF , VidalEet al. Human oocyte-derived methylation differences persist in the placenta revealing widespread transient imprinting. PLOS Genet.12(11), e1006427 (2016).
  • Carli D , RiberiE , FerreroGB , MussaA. Syndromic disorders caused by disturbed human imprinting. J. Clin. Res. Pediatr. Endocrinol.12(1), 1–16 (2020).
  • Carpenter BL , ZhouW , MadajZet al. Mother–child transmission of epigenetic information by tunable polymorphic imprinting. Proc. Natl. Acad. Sci. U. S. A.115(51), E11970–E11977 (2018).
  • Carpenter BL , RembaTK , ThomasSLet al. Oocyte age and preconceptual alcohol use are highly correlated with epigenetic imprinting of a noncoding RNA (nc886). Proc. Natl. Acad. Sci. U. S. A.118(12), e2026580118 (2021).
  • Marttila S , ViiriLE , MishraPPet al. Methylation status of nc886 epiallele reflects periconceptional conditions and is associated with glucose metabolism through nc886 RNAs. Clin. Epigenetics13(1), 143 (2021).
  • Treppendahl MB , QiuX , SøgaardAet al. Allelic methylation levels of the noncoding VTRNA2-1 located on chromosome 5q31.1 predict outcome in AML. Blood119(1), 206–216 (2012).
  • Romanelli V , NakabayashiK , VizosoMet al. Variable maternal methylation overlapping the nc886/vtRNA2-1 locus is locked between hypermethylated repeats and is frequently altered in cancer. Epigenetics9(5), 783–790 (2014).
  • Kostiniuk D , TamminenH , MishraPPet al. Methylation pattern of polymorphically imprinted nc886 is not conserved across mammalia. PLOS ONE17(3), e0261481 (2022).
  • Lee YS . Are we studying non-coding RNAs correctly? Lessons from nc886. Int. J. Molec. Sci.23(8), 4251 (2022).
  • Fort RS , GaratB , Sotelo-SilveiraJR , DuhagonMA. vtRNA2-1/nc886 produces a small RNA that contributes to its tumor suppression action through the microRNA pathway in prostate cancer. Non-coding RNA6, 7 (2020).
  • Silver MJ , KesslerNJ , HennigBJet al. Independent genomewide screens identify the tumor suppressor VTRNA2-1 as a human epiallele responsive to periconceptional environment. Genome Bio.16(1), 118 (2015).
  • Lokk K , ModhukurV , RajashekarBet al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol.15(4), 3248 (2014).
  • Dugué PA , YuC , McKayTet al. Vtrna2-1: Genetic variation, heritable methylation and disease association. Int. J. Molec. Sci.22(5), 1–18 (2021).
  • van Dijk SJ , PetersTJ , BuckleyMet al. DNA methylation in blood from neonatal screening cards and the association with BMI and insulin sensitivity in early childhood. Int. J. Obes. (Lond.)42(1), 28–35 (2018).
  • Shaoqing Y , RuxinZ , GuojunLet al. Microarray analysis of differentially expressed microRNAs in allergic rhinitis. Am. J. Rhinol. Aller.25(6), e242–e246 (2011).
  • Suojalehto H , LindströmI , MajuriM-Let al. Altered MicroRNA expression of nasal mucosa in long-term asthma and allergic rhinitis. IAA163(3), 168–178 (2014).
  • Sharbati J , LewinA , Kutz-LohroffBet al. Integrated microRNA-mRNA-analysis of human monocyte derived macrophages upon Mycobacterium avium subsp. hominissuis infection. PLOS ONE6(5), e20258 (2011).
  • Asaoka T , SotolongoB , IslandERet al. MicroRNA signature of intestinal acute cellular rejection in formalin-fixed paraffin-embedded mucosal biopsies. Am. J. Transplant.12(2), 458–468 (2012).
  • Lin C-H , LeeY-S , HuangY-Y , TsaiC-N. Methylation status of vault RNA 2-1 promoter is a predictor of glycemic response to glucagon-like peptide-1 analog therapy in type 2 diabetes mellitus. BMJ Open Diabetes Res. Care.9(1), e001416 (2021).
  • Barker DJP , OsmondC. Infant mortality, childhood nutrition, and ischaemic heart disease in England and in Wales. The Lancet327(8489), 1077–1081 (1986).
  • Pilvar D , ReimanM , PilvarA , LaanM. Parent-of-origin-specific allelic expression in the human placenta is limited to established imprinted loci and it is stably maintained across pregnancy. Clin. Epigenetics11(1), 94 (2019).
  • Wilkinson LS , DaviesW , IslesAR. Genomic imprinting effects on brain development and function. Nat. Rev. Neurosci.8(11), 832–843 (2007).
  • Edgar R , DomrachevM , LashAE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res.30(1), 207–210 (2002).
  • Hannum G , GuinneyJ , ZhaoLet al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell49(2), 359–367 (2013).
  • Lehne B , DrongAW , LohMet al. A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies. Genome Biol.16(1), 37 (2015).
  • Hannon E , DempsterE , VianaJet al. An integrated genetic-epigenetic analysis of schizophrenia: evidence for co-localization of genetic associations and differential DNA methylation. Genome Biol.17(1), 176 (2016).
  • Markunas CA , WilcoxAJ , XuZet al. Maternal age at delivery is associated with an epigenetic signature in both newborns and adults. PLOS ONE11(7), e0156361 (2016).
  • Ventham NT , KennedyNA , AdamsATet al. Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease. Nat. Commun.7(1), 13507 (2016).
  • Barbosa M , JoshiRS , GargPet al. Identification of rare de novo epigenetic variations in congenital disorders. Nat. Commun.9(1), 2064 (2018).
  • Li S , WongEM , JooJEet al. Genetic and environmental causes of variation in the difference between biological age based on DNA methylation and chronological age for middle-aged women. Twin Res. Hum. Genet.18(6), 720–726 (2015).
  • Chuang Y-H , PaulKC , BronsteinJMet al. Parkinson’s disease is associated with DNA methylation levels in human blood and saliva. Genome Med.9(1), 76 (2017).
  • Curtis SW , CobbDO , KilaruVet al. Exposure to polybrominated biphenyl (PBB) associates with genome-wide DNA methylation differences in peripheral blood. Epigenetics14(1), 52–66 (2019).
  • Zhang X , HuY , AouizeratBEet al. Machine learning selected smoking-associated DNA methylation signatures that predict HIV prognosis and mortality. Clin. Epigenetics10(1), 155 (2018).
  • Kurushima Y , TsaiP-C , Castillo-FernandezJet al. Epigenetic findings in periodontitis in UK twins: a cross-sectional study. Clin.Epigenetics11(1), 27 (2019).
  • Arloth J , EraslanG , AndlauerTFMet al. DeepWAS: multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning. PLOS Comput. Biol.16(2), e1007616 (2020).
  • Kilaru V , KnightAK , KatrinliSet al. Critical evaluation of copy number variant calling methods using DNA methylation. Genet. Epidemiol.44(2), 148–158 (2020).
  • Robinson O , ChadeauHyam M , KaramanIet al. Determinants of accelerated metabolomic and epigenetic aging in a UK cohort. Aging Cell19(6), e13149 (2020).
  • Nuotio M-L , PervjakovaN , JoensuuAet al. An epigenome-wide association study of metabolic syndrome and its components. Sci. Rep.10(1), 20567 (2020).
  • Zeilinger S , KühnelB , KloppNet al. Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLOS ONE8(5), e63812 (2013).
  • Laaksonen J , MishraPP , SeppäläIet al. Mitochondrial genome-wide analysis of nuclear DNA methylation quantitative trait loci. Hum. Mol. Genet.ddab339 (2021).
  • Wang Y , KarlssonR , LampaEet al. Epigenetic influences on aging: a longitudinal genome-wide methylation study in old Swedish twins. Epigenetics13(9), 975–987 (2018).
  • Hannon E , KnoxO , SugdenKet al. Characterizing genetic and environmental influences on variable DNA methylation using monozygotic and dizygotic twins. PLOS Genet.14(8), e1007544 (2018).
  • Liu Y , AryeeMJ , PadyukovLet al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat. Biotechnol.31(2), 142–147 (2013).
  • Reynolds LM , TaylorJR , DingJet al. Age-related variations in the methylome associated with gene expression in human monocytes and T cells. Nat. Commun.5(1), 5366 (2014).
  • McRae AF , PowellJE , HendersAKet al. Contribution of genetic variation to transgenerational inheritance of DNA methylation. Genome Biol.15(5), R73 (2014).
  • Everson TM , MarsitCJ , MichaelO’Shea Tet al. Epigenome-wide analysis identifies genes and pathways linked to neurobehavioral variation in preterm infants. Sci. Rep.9(1), 6322 (2019).
  • Huang JY , CaiS , HuangZet al. Analyses of child cardiometabolic phenotype following assisted reproductive technologies using a pragmatic trial emulation approach. Nat. Commun.12(1), 5613 (2021).
  • van Dongen J , GordonSD , McRaeAFet al. Identical twins carry a persistent epigenetic signature of early genome programming. Nat. Commun.12(1), 5618 (2021).
  • Tan Q , FrostM , HeijmansBTet al. Epigenetic signature of birth weight discordance in adult twins. BMC Genomics15(1), 1062 (2014).
  • Bens S , KolarovaJ , BeygoJet al. Phenotypic spectrum and extent of DNA methylation defects associated with multilocus imprinting disturbances. Epigenomics8(6), 801–816 (2016).
  • Horvath S , MahV , LuATet al. The cerebellum ages slowly according to the epigenetic clock. Aging7(5), 294–306 (2015).
  • Horvath S , LangfelderP , KwakSet al. Huntington’s disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging8(7), 1485–1512 (2016).
  • Bonder MJ , KaselaS , KalsMet al. Genetic and epigenetic regulation of gene expression in fetal and adult human livers. BMC Genomics15(1), 860 (2014).
  • Voisin S , HarveyNR , HauptLMet al. An epigenetic clock for human skeletal muscle. J. Cachexia Sarcopenia Muscle11(4), 887–898 (2020).
  • Sillanpää E , HeikkinenA , KankaanpääAet al. Blood and skeletal muscle ageing determined by epigenetic clocks and their associations with physical activity and functioning. Clin. Epigenetics13(1), 110 (2021).
  • Tuominen PPA , HusuP , RaitanenJ , LuotoRM. Rationale and methods for a randomized controlled trial of a movement-to-music video program for decreasing sedentary time among mother–child pairs. BMC Public Health15, 1016 (2015).
  • Roos L , SandlingJK , BellCGet al. Higher nevus count exhibits a distinct DNA methylation signature in healthy human skin: implications for melanoma. J. Invest. Dermatol.137(4), 910–920 (2017).
  • Åsenius F , Gorrie-StoneTJ , BrewAet al. The DNA methylome of human sperm is distinct from blood with little evidence for tissue-consistent obesity associations. PLOS Genet.16(10), e1009035 (2020).
  • Jenkins TG , JamesER , AlonsoDFet al. Cigarette smoking significantly alters sperm DNA methylation patterns. Andrology5(6), 1089–1099 (2017).
  • Green BB , KaragasMR , PunshonTet al. Epigenome-wide assessment of DNA methylation in the placenta and arsenic exposure in the new hampshire birth cohort study (USA). Environ. Health Perspect.124(8), 1253–1260 (2016).
  • Paquette AG , HousemanEA , GreenBBet al. Regions of variable DNA methylation in human placenta associated with newborn neurobehavior. Epigenetics11(8), 603–613 (2016).
  • Konwar C , PriceEM , WangLQ , WilsonSL , TerryJ , RobinsonWP. DNA methylation profiling of acute chorioamnionitis-associated placentas and fetal membranes: insights into epigenetic variation in spontaneous preterm births. Epigenetics Chromatin11(1), 63 (2018).
  • Bhattacharya A , FreedmanAN , AvulaVet al. Placental genomics mediates genetic associations with complex health traits and disease. Nat. Commun.13(1), 706 (2022).
  • Borodulin K , TolonenH , JousilahtiPet al. Cohort profile: the National FINRISK Study. Int. J. Epidemiol.47(3), 696–696i (2018).
  • Kaprio J . The Finnish Twin Cohort Study: an update. Twin Res. Hum. Genet.16(1), 157–162 (2013).
  • Kaprio J , BollepalliS , BuchwaldJet al. The Older Finnish Twin Cohort – 45 years of follow-up. Twin Res. Hum. Genet.22(4), 240–254 (2019).
  • Kaidesoja M , AaltonenS , BoglLHet al. FinnTwin16: a longitudinal study from age 16 of a population-based Finnish twin cohort. Twin Res. Hum. Genet.22(6), 530–539 (2019).
  • Rose RJ , SalvatoreJE , AaltonenSet al. FinnTwin12 Cohort: an updated review. Twin Res. Hum. Genet.22(5), 302–311 (2019).
  • Kovanen V , AukeeP , KokkoKet al. Design and protocol of Estrogenic Regulation of Muscle Apoptosis (ERMA) study with 47 to 55-year-old women’s cohort: novel results show menopause-related differences in blood count. Menopause25(9), 1020–1032 (2018).
  • Holle R , HappichM , LowelHet al. KORA – a research platform for population based health research. Gesundheitswesen67(Suppl. 1), S19–25 (2005).
  • Winkelmann BR , MärzW , BoehmBOet al. Rationale and design of the LURIC study – a resource for functional genomics, pharmacogenomics and long-term prognosis of cardiovascular disease. Pharmacogenomics2(1s1), S1–S73 (2001).
  • Luoto RM , KinnunenTI , AittasaloMet al. Prevention of gestational diabetes: design of a cluster-randomized controlled trial and one-year follow-up. BMC Pregnancy Childbirth10, 39 (2010).
  • Pedersen NL . Swedish Adoption/Twin Study on Aging (SATSA), 1984, 1987, 1990, 1993, 2004, 2007, and 2010: Version 2, ICPSR – Interuniversity Consortium for Political and Social Research. (2015).
  • Raitakari OT , JuonalaM , RönnemaaTet al. Cohort profile: The Cardiovascular Risk in Young Finns Study. Int. J. Epidemiol.37(6), 1220–1226 (2008).
  • Aryee MJ , JaffeAE , Corrada-BravoHet al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics30(10), 1363–1369 (2014).
  • Touleimat N , TostJ. Complete pipeline for Infinium® Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics4(3), 325–341 (2012).
  • McCartney DL , WalkerRM , MorrisSWet al. Identification of polymorphic and off-target probe binding sites on the Illumina Infinium MethylationEPIC BeadChip. Genom. Data9, 22–24 (2016).
  • Pidsley R , YWong CC , VoltaMet al. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics14(1), 293 (2013).
  • Hernandez Mora JR , TayamaC , Sánchez-DelgadoMet al. Characterization of parent-of-origin methylation using the Illumina Infinium MethylationEPIC array platform. Epigenomics10(7), 941–954 (2018).
  • Chambers JC , LohM , LehneBet al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol.3(7), 526–534 (2015).
  • You Y-A , KwonEJ , HwangH-Set al. Elevated methylation of the vault RNA2-1 promoter in maternal blood is associated with preterm birth. BMC Genomics22(1), 528 (2021).
  • Min JL , HemaniG , HannonEet al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat. Genet.53(9), 1311–1321 (2021).
  • Sirugo G , WilliamsSM , TishkoffSA. The Missing Diversity in Human Genetic studies. Cell177(1), 26–31 (2019).
  • Wilcox AJ , LieRT , SolvollKet al. Folic acid supplements and risk of facial clefts: national population based case-control study. BMJ334(7591), 464 (2007).
  • Gonseth S , ShawGM , RoyRet al. Epigenomic profiling of newborns with isolated orofacial clefts reveals widespread DNA methylation changes and implicates metastable epiallele regions in disease risk. Epigenetics14(2), 198–213 (2019).
  • Ahmed MK , BuiAH , TaioliE. Epidemiology of cleft lip and palate. In: Designing Strategies for Cleft Lip and Palate Care.AlmasriMA ( Ed.). IntechOpen (2017). www.intechopen.com/chapters/53918
  • Sanchez-Delgado M , RiccioA , EggermannTet al. Causes and consequences of multi-locus imprinting disturbances in humans. Trends Genet.32(7), 444–455 (2016).
  • Smith FM , GarfieldAS , WardA. Regulation of growth and metabolism by imprinted genes. Cytogenet Genome Res.113(1-4), 279–291 (2006).
  • Hanna CW , PeñaherreraMS , SaadehHet al. Pervasive polymorphic imprinted methylation in the human placenta. Genome Res.26(6), 756–767 (2016).
  • Yan R , GuC , YouDet al. Decoding dynamic epigenetic landscapes in human oocytes using single-cell multi-omics sequencing. Cell Stem Cell28(9), 1641–1656 (2021).
  • Okae H , ChibaH , HiuraHet al. Genome-wide analysis of DNA methylation dynamics during early human development. PLOS Genet.10(12), e1004868 (2014).
  • Cao J , SongY , BiNet al. DNA methylation-mediated repression of miR-886-3p predicts poor outcome of human small cell lung cancer. Cancer Res.73(11), 3326–3335 (2013).
  • Olsen KW , Castillo-FernandezJ , ZedelerAet al. A distinctive epigenetic ageing profile in human granulosa cells. Hum. Reprod.35(6), 1332–13442020).
  • Eppig JJ . Oocyte control of ovarian follicular development and function in mammals. Reproduction122(6), 829–838 (2001).
  • Gilchrist RB , LaneM , ThompsonJG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update14(2), 159–177 (2008).
  • Prättälä R . Dietary changes in Finland – success stories and future challenges. Appetite41(3), 245–249 (2003).
  • Erkkola M , KarppinenM , JärvinenAet al. Folate, vitamin D, and iron intakes are low among pregnant Finnish women. Eur. J. Clin. Nutr.52(10), 742–748 (1998).
  • Steegers-Theunissen RPM , TwigtJ , PestingerV , SinclairKD. The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Hum. Reprod. Update19(6), 640–655, (2013).
  • Becker W , LyhneN , PedersenANet al. Nordic Nutrition Recommendations2004 – integrating nutrition and physical activity. Food Nutr. Res.52(10), 178–187 (2004).
  • van Baak TE , CoarfaC , DuguéPAet al. Epigenetic supersimilarity of monozygotic twin pairs. Genome Biol.19(2), 2018).
  • van Dongen J , NivardMG , WillemsenGet al. Genetic and environmental influences interact with age and sex in shaping the human methylome. Nat. Commun.7(1), 11115 (2016).
  • Zeng Y , ChenT. DNA methylation reprogramming during mammalian development. Genes10(4), 257 (2019).