218
Views
0
CrossRef citations to date
0
Altmetric
Perspective

A perspective on diet, epigenetics and complex diseases: where is the field headed next?

ORCID Icon, , , , , , , , , ORCID Icon, , ORCID Icon, & show all
Pages 1281-1304 | Received 22 Jul 2022, Accepted 11 Oct 2022, Published online: 03 Nov 2022

References

  • Felsenfeld G . A brief history of epigenetics. Cold Spring Harb. Perspect. Biol.6(1), a018200 (2014).
  • Wei JW , HuangK , YangC , KangCS. Non-coding RNAs as regulators in epigenetics. Oncol. Rep.37(1), 3–9 (2017).
  • Peschansky VJ , WahlestedtC. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics9(1), 3–12 (2014).
  • Waterland RA , JirtleRL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol.23(15), 5293–5300 (2003).
  • Dolinoy DC , WeidmanJR , WaterlandRA , JirtleRL. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ. Health Perspect.114(4), 567–572 (2006).
  • Odhiambo JF , PankeyCL , GhnenisAB , FordSP. A review of maternal nutrition during pregnancy and impact on the offspring through development: evidence from animal models of over- and undernutrition. Int. J. Environ. Res. Public Health17(18), 6926 (2020).
  • Roseboom T , de RooijS , PainterR. The Dutch famine and its long-term consequences for adult health. Early Hum. Dev.82(8), 485–491 (2006).
  • Heijmans BT , TobiEW , SteinADet al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA105(44), 17046–17049 (2008).
  • Tobi EW , LumeyLH , TalensRPet al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum. Mol. Genet.18, 4046–4053 (2009).
  • Zhang Y , KutateladzeTG. Diet and the epigenome. Nat. Commun.9(1), 3375 (2018).
  • Dai Z , RameshV , LocasaleJW. The evolving metabolic landscape of chromatin biology and epigenetics. Nat. Rev. Genet.21(12), 737–753 (2020).
  • Coppedè F . One-carbon epigenetics and redox biology of neurodegeneration. Free Radic. Biol. Med.170, 19–33 (2021).
  • Evans LW , FergusonBS. Food bioactive HDAC inhibitors in the epigenetic regulation of heart failure. Nutrients10(8), 1120 (2018).
  • Ferrero G , CarpiS , PoliniBet al. Intake of natural compounds and circulating microRNA expression levels: their relationship investigated in healthy subjects with different dietary habits. Front. Pharmacol.11, 619200 (2021).
  • Woo V , AlenghatT. Epigenetic regulation by gut microbiota. Gut Microbes14(1), 2022407 (2022).
  • Li D , LiY , YangS , LuJ , JinX , WuM. Diet-gut microbiota-epigenetics in metabolic diseases: from mechanisms to therapeutics. Biomed. Pharmacother.153, 113290 (2022).
  • Ng SF , LinRC , LaybuttDR , BarresR , OwensJA , MorrisMJ. Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature467(7318), 963–966 (2010).
  • Yajnik CS , DeshpandeSS , JacksonAAet al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia51(1), 29–38 (2008).
  • González-Peña SM , Calvo-AnguianoG , Martínez-de-VillarrealLEet al. Maternal folic acid intake and methylation status of genes associated with ventricular septal defects in children: case–control study. Nutrients13(6), 2071 (2021).
  • Ly A , LeeH , ChenJet al. Effect of maternal and postweaning folic acid supplementation on mammary tumor risk in the offspring. Cancer Res.71(3), 988–997 (2011).
  • Urbonaite G , KnyzelieneA , BunnFS , SmalskysA , NeniskyteU. The impact of maternal high-fat diet on offspring neurodevelopment. Front. Neurosci.16, 909762 (2022).
  • Venu L , PadmavathiIJ , KishoreYDet al. Long-term effects of maternal magnesium restriction on adiposity and insulin resistance in rat pups. Obesity (Silver Spring)16(6), 1270–1276 (2008).
  • Franzago M , SanturbanoD , VitacolonnaE , StuppiaL. Genes and diet in the prevention of chronic diseases in future generations. Int. J. Mol. Sci.21(7), 2633 (2020).
  • Perera BPU , FaulkC , SvobodaLK , GoodrichJM , DolinoyDC. The role of environmental exposures and the epigenome in health and disease. Environ. Mol. Mutagen.61(1), 176–192 (2020).
  • Lillycrop KA , BurdgeGC. Maternal diet as a modifier of offspring epigenetics. J. Dev. Orig. Health Dis.6(2), 88–95 (2015).
  • Kitsiou-Tzeli S , TzetisM. Maternal epigenetics and fetal and neonatal growth. Curr. Opin. Endocrinol. Diabetes Obes.24(1), 43–46 (2017).
  • Tobi EW , SlagboomPE , van DongenJet al. Prenatal famine and genetic variation are independently and additively associated with DNA methylation at regulatory loci within IGF2/H19. PLOS ONE7(5), e37933 (2012).
  • Hoyo C , DaltveitAK , IversenEet al. Erythrocyte folate concentrations, CpG methylation at genomically imprinted domains, and birth weight in a multiethnic newborn cohort. Epigenetics9(8), 1120–1130 (2014).
  • LaRocca J , BinderAM , McElrathTF , MichelsKB. The impact of first trimester phthalate and phenol exposure on IGF2/H19 genomic imprinting and birth outcomes. Environ. Res.133, 396–406 (2014).
  • de Sousa Fernandes MS , CalazansCT , SantosGCJ. Maternal diet and epigenetic modifications at the start of life: repercussions on the development of obesity. Health Sci. J.15(9), 1–4 (2021).
  • Franzago M , FraticelliF , StuppiaL , VitacolonnaE. Nutrigenetics, epigenetics and gestational diabetes: consequences in mother and child. Epigenetics14(3), 215–235 (2019).
  • Barker DJ . The developmental origins of adult disease. Eur. J. Epidemiol.18(8), 733–736 (2003).
  • Soubry A . POHaD: why we should study future fathers. Environ. Epigenet.4(2), dvy007 (2018).
  • Stuppia L , FranzagoM , BalleriniP , GattaV , AntonucciI. Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health. Clin. Epigenetics7(1), 1–15 (2015).
  • Franzago M , RovereML , Franchi PG Vitacolonna E, Stuppia L. Epigenetics and human reproduction: the primary prevention of the noncommunicable diseases. Epigenomics11(12), 1441–1460 (2019).
  • Donkin I , VersteyheS , IngerslevLRet al. Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell. Metab.23(2), 369–378 (2016).
  • Franzago M , SabovicI , FranchiSet al. Sperm DNA methylation at metabolism-related genes in vegan subjects. Front. Endocrinol. (Lausanne)12, 633943 (2021).
  • Moody L , ChenH , PanYX. Early-life nutritional programming of cognition – the fundamental role of epigenetic mechanisms in mediating the relation between early-life environment and learning and memory process. Adv. Nutr.8(2), 337–350 (2017).
  • Maloney B , LahiriDK. Epigenetics of dementia: understanding the disease as a transformation rather than a state. Lancet Neurol.15(7), 760–774 (2016).
  • Gallo R , StoccoroA , CagianoRet al. Correlation among maternal risk factors, gene methylation and disease severity in females with autism spectrum disorder. Epigenomics14(4), 175–185 (2022).
  • Faa G , ManchiaM , PintusR , GerosaC , MarcialisMA , FanosV. Fetal programming of neuropsychiatric disorders. Birth Defects Res. C Embryo Today108(3), 207–223 (2016).
  • Alam R , AbdolmalekyHM , ZhouJR. Microbiome, inflammation, epigenetic alterations, and mental diseases. Am. J. Med. Genet. B Neuropsychiatr. Genet.174(6), 651–660 (2017).
  • Gawlińska K , GawlińskiD , FilipM , PrzegalińskiE. Relationship of maternal high-fat diet during pregnancy and lactation to offspring health. Nutr. Rev.79(6), 709–725 (2021).
  • Gawlińska K , GawlińskiD , BorczykM , KorostyńskiM , PrzegalińskiE , FilipM. A maternal high-fat diet during early development provokes molecular changes related to autism spectrum disorder in the rat offspring brain. Nutrients13(9), 3212 (2021).
  • Fesser EA , GianatiempoO , BerardinoBGet al. Limited contextual memory and transcriptional dysregulation in the medial prefrontal cortex of mice exposed to early protein malnutrition are intergenerationally transmitted. J. Psychiatr. Res.139, 139–149 (2021).
  • House JS , MendezM , MaguireRLet al. Periconceptional maternal Mediterranean diet is associated with favorable offspring behaviors and altered CpG methylation of imprinted genes. Front. Cell Dev. Biol.6, 107 (2018).
  • Lozupone M , D’UrsoF , PiccininniCet al. The relationship between epigenetics and microbiota in neuropsychiatric diseases. Epigenomics12(17), 1559–1568 (2020).
  • World Alzheimer Report 2015. Alzheimer’s Disease International , London, UK (2015).
  • Migliore L , CoppedèF. Gene–environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat. Rev. Neurol.(2022). doi:10.1038/s41582-022-00714-w
  • Więckowska-Gacek A , Mietelska-PorowskaA , WydrychM , WojdaU. Western diet as a trigger of Alzheimer’s disease: from metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res. Rev.70, 101397 (2021).
  • Thelen M , Brown-BorgHM. Does diet have a role in the treatment of Alzheimer’s disease?Front. Aging Neurosci.12, 617071 (2020).
  • Giridharan VV , BarichelloDe Quevedo CE , PetronilhoF. Microbiota–gut–brain axis in the Alzheimer’s disease pathology – an overview. Neurosci. Res.181, 17–21 (2022).
  • Mitrea L , NemeşSA , SzaboK , TelekyBE , VodnarDC. Guts imbalance imbalances the brain: a review of gut microbiota association with neurological and psychiatric disorders. Front. Med. (Lausanne)9, 813204 (2022).
  • Martínez Leo EE , SeguraCampos MR. Effect of ultra-processed diet on gut microbiota and thus its role in neurodegenerative diseases. Nutrition71, 110609 (2020).
  • Wang X , SunG , FengTet al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res.29(10), 787–803 (2019).
  • Saji N , MurotaniK , HisadaTet al. Relationship between dementia and gut microbiome-associated metabolites: a cross-sectional study in Japan. Sci. Rep.10(1), 8088 (2020).
  • Nagu P , ParasharA , BehlT , MehtaV. Gut microbiota composition and epigenetic molecular changes connected to the pathogenesis of Alzheimer’s disease. J. Mol. Neurosci.71(7), 1436–1455 (2021).
  • Coppedè F . One-carbon metabolism and Alzheimer’s disease: focus on epigenetics. Curr. Genomics11(4), 246–260 (2010).
  • Fuso A , SeminaraL , CavallaroRA , D’AnselmiF , ScarpaS. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol. Cell. Neurosci.28(1), 195–204 (2005).
  • Chan A , SheaTB. Folate deprivation increases presenilin expression, gamma-secretase activity, and Abeta levels in murine brain: potentiation by ApoE deficiency and alleviation by dietary S-adenosyl methionine. J. Neurochem.102(3), 753–760 (2007).
  • Chan A , RogersE , SheaTB. Dietary deficiency in folate and vitamin E under conditions of oxidative stress increases phospho-tau levels: potentiation by ApoE4 and alleviation by S-adenosylmethionine. J. Alzheimers Dis.17(3), 483–487 (2009).
  • Fuso A , NicoliaV , RicceriLet al. S-adenosylmethionine reduces the progress of the Alzheimer-like features induced by B-vitamin deficiency in mice. Neurobiol. Aging33(7), 1482.e1–16 (2012).
  • Do Carmo S , HanzelCE , JacobsMLet al. Rescue of early bace-1 and global DNA demethylation by S-adenosylmethionine reduces amyloid pathology and improves cognition in an Alzheimer’s model. Sci. Rep.6, 34051 (2016).
  • Cavallaro RA , NicoliaV , FiorenzaMT , ScarpaS , FusoA. S-Adenosylmethionine and superoxide dismutase 1 synergistically counteract Alzheimer’s disease features progression in TgCRND8 mice. Antioxidants (Basel)6(4), 76 (2017).
  • Grossi E , StoccoroA , TannorellaP , MiglioreL , CoppedèF. Artificial neural networks link one-carbon metabolism to gene-promoter methylation in Alzheimer’s disease. J. Alzheimers Dis.53(4), 1517–1522 (2016).
  • Monti N , CavallaroRA , StoccoroAet al. CpG and non-CpG Presenilin1 methylation pattern in course of neurodevelopment and neurodegeneration is associated with gene expression in human and murine brain. Epigenetics15(8), 781–799 (2020).
  • Chan A , PaskavitzJ , RemingtonR , RasmussenS , SheaTB. Efficacy of a vitamin/nutriceutical formulation for early-stage Alzheimer’s disease: a 1-year, open-label pilot study with a 16-month caregiver extension. Am. J. Alzheimers Dis. Other Demen.23(6), 571–585 (2008).
  • Remington R , ChanA , PaskavitzJ , SheaTB. Efficacy of a vitamin/nutriceutical formulation for moderate-stage to later-stage Alzheimer’s disease: a placebo-controlled pilot study. Am. J. Alzheimers Dis. Other Demen.24(1), 27–33 (2009).
  • Remington R , BechtelC , LarsenDet al. A phase II randomized clinical trial of a nutritional formulation for cognition and mood in Alzheimer’s disease. J. Alzheimers Dis.45(2), 395–405 (2015).
  • Remington R , BechtelC , LarsenDet al. Maintenance of cognitive performance and mood for individuals with Alzheimer’s disease following consumption of a nutraceutical formulation: a one-year, open-label study. J. Alzheimers Dis.51(4), 991–995 (2016).
  • Coppedè F . Epigenetic regulation in Alzheimer’s disease: is it a potential therapeutic target?Expert Opin. Ther. Targets25(4), 283–298 (2021).
  • Smith RG , PishvaE , ShirebyGet al. A meta-analysis of epigenome-wide association studies in Alzheimer’s disease highlights novel differentially methylated loci across cortex. Nat. Commun.12(1), 3517 (2021).
  • Angelopoulou E , PaudelYN , PapageorgiouSG , PiperiC. Environmental impact on the epigenetic mechanisms underlying Parkinson’s disease pathogenesis: a narrative review. Brain Sci.12(2), 175 (2022).
  • Coppedè F . Epigenetics of neuromuscular disorders. Epigenomics12(23), 2125–2139 (2020).
  • Newell ME , AdhikariS , HaldenRU. Systematic and state-of-the science review of the role of environmental factors in amyotrophic lateral sclerosis (ALS) or Lou Gehrig’s disease. Sci. Total Environ.817, 152504 (2022).
  • Xie A , EnsinkE , LiPet al. Bacterial butyrate in Parkinson’s disease is linked to epigenetic changes and depressive symptoms. Mov. Disord.37(8), 1644–1653 (2022).
  • Caputo V , StrafellaC , TermineAet al. Epigenomic signatures in age-related macular degeneration: focus on their role as disease modifiers and therapeutic targets. Eur. J. Ophthalmol.31(6), 2856–2867 (2021).
  • Gastaldello A , GiampieriF , QuilesJLet al. Adherence to the Mediterranean-style eating pattern and macular degeneration: a systematic review of observational studies. Nutrients14(10), 2028 (2022).
  • Keeling E , LynnSA , KohYMet al. A high fat “Western-style” diet induces AMD-like features in wildtype mice. Mol. Nutr. Food Res.66(11), e2100823 (2022).
  • Hunter A , SpechlerPA , CwangerAet al. DNA methylation is associated with altered gene expression in AMD. Invest. Ophthalmol. Vis. Sci.53(4), 2089–2105 (2012).
  • Wang Z , HuangY , ChuFet al. Integrated analysis of DNA methylation and transcriptome profile to identify key features of age-related macular degeneration. Bioengineered12(1), 7061–7078 (2021).
  • Liang G , MaW , LuoY , YinJ , HaoL , ZhongJ. Identification of differentially expressed and methylated genes and construction of a co-expression network in age-related macular degeneration. Ann. Transl. Med.10(4), 223 (2022).
  • Wallace RG , TwomeyLC , CustaudMAet al. The role of epigenetics in cardiovascular health and ageing: a focus on physical activity and nutrition. Mech. Ageing Dev.174, 76–85 (2018).
  • Bowen KJ , SullivanVK , Kris-EthertonPM , PetersenKS. Nutrition and cardiovascular disease – an update. Curr. Atheroscler. Rep.20(2), 8 (2018).
  • Kalea AZ , DrosatosK , BuxtonJL. Nutriepigenetics and cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care21(4), 252–259 (2018).
  • Fernández-Sanlés A , BaixerasSS , SubiranaI , DeganoIR , ElosuaR. Association between DNA methylation and coronary heart disease or other atherosclerotic events: a systematic review. Atherosclerosis263, 325–333 (2017).
  • Tabaei S , TabaeeSS. DNA methylation abnormalities in atherosclerosis. Artif. Cells Nanomed. Biotechnol.47(1), 2031–2041 (2019).
  • Gluckman PD , HansonMA , BuklijasT , LowFM , BeedleAS. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat. Rev. Endocrinol.5(7), 401–408 (2009).
  • Fernández-Sanlés A , Sayols-BaixerasS , SubiranaIet al. DNA methylation biomarkers of myocardial infarction and cardiovascular disease. Clin. Epigenet.13(1), 86 (2021).
  • Tremblay BL , GuénardF , RudkowskaI , LemieuxS , CoutureP , VohlMC. Epigenetic changes in blood leukocytes following an omega-3 fatty acid supplementation. Clin. Epigenet.9, 43 (2017).
  • Papait R , CattaneoP , KunderfrancoPet al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc. Natl Acad. Sci. U S A110(50), 20164–20169 (2013).
  • Evans LW , AthukoralaM , Martinez-GurynK , FergusonBS. The role of histone acetylation and the microbiome in phytochemical efficacy for cardiovascular diseases. Int. J. Mol. Sci.21(11), 4006 (2020).
  • Kalea AZ , DrosatosK , BuxtonJL. Nutriepigenetics and cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care21(4), 252–259 (2018).
  • Gharipour M , ManiA , AminiBaghbahadorani Met al. How are epigenetic modifications related to cardiovascular disease in older adults? Int. J. Mol. Sci. 22(18), 9949 (2021).
  • Wu L , DaiX , ZhanJet al. Profiling peripheral microRNAs in obesity and Type 2 diabetes mellitus. APMIS123(7), 580–585 (2015).
  • Jayawardena E , MedzikovicL , RuffenachG , EghbaliM. Role of miRNA-1 and miRNA-21 in acute myocardial ischemia – reperfusion injury and their potential as therapeutic strategy. Int. J. Mol. Sci.23(3), 1512 (2022).
  • Milagro FI , MirandaJ , PortilloMP , Fernandez-QuintelaA , CampiónJ , MartínezJA. High-throughput sequencing of microRNAs in peripheral blood mononuclear cells: identification of potential weight loss biomarkers. PLOS ONE8(1), e54319 (2013).
  • Du H , ZhaoY , LiH , WangDW , ChenC. Roles of microRNAs in glucose and lipid metabolism in the heart. Front. Cardiovasc. Med.8, 716213 (2021).
  • Fasolo F , DiGregoli K , MaegdefesselL , JohnsonJL. Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc. Res.115(12), 1732–1756 (2019).
  • Shi Y , QuJ , GaiL , YuanD , YuanC. Long non-coding RNAs in metabolic and inflammatory pathways in obesity. Curr. Pharm. Des.26(27), 3317–3325 (2020).
  • Franco D , AranegaA , DominguezJN. Non-coding RNAs and atrial fibrillation. Adv. Exp. Med. Biol.1229, 311–325 (2020).
  • Zhu L , LiN , SunL , ZhengD , ShaoG. Non-coding RNAs: the key detectors and regulators in cardiovascular disease. Genomics113(1 Pt 2), 1233–1246 (2021).
  • Yin L , ZhuX , NovákPet al. The epitranscriptome of long noncoding RNAs in metabolic diseases. Clin. Chim. Acta515, 80–89 (2021).
  • Cannataro R , PerriM , GallelliL , CaroleoMC , DeSarro G , CioneE. Ketogenic diet acts on body remodeling and microRNAs expression profile. MicroRNA8(2), 116–126 (2019).
  • Assmann TS , Riezu-BojJI , MilagroFI , MartínezJA. Circulating adiposity-related microRNAs as predictors of the response to a low-fat diet in subjects with obesity. J. Cell. Mol. Med.24(5), 2956–2967 (2020).
  • Skuratovskaia DA , VulfMA , KomarA , KirienkovaE , LitvinovaLS. Epigenetic regulation as a promising tool for treatment of atherosclerosis. Front. Biosci.12(1), 173–199 (2020).
  • Estrella Ibarra P , García-SolísP , Solís-SáinzJC , Cruz-HernándezA. Expression of miRNA in obesity and insulin resistance: a review. Endokrynol. Pol.72(1), 73–80 (2021).
  • Rosato V , TempleNJ , LaVecchia C , CastellanG , TavaniA , GuercioV. Mediterranean diet and cardiovascular disease: a systematic review and meta-analysis of observational studies. Eur. J. Nutr.58(1), 173–191 (2019).
  • Martínez-González MA , Salas-SalvadóJ , EstruchR , CorellaD , FitóM , RosE. Benefits of the Mediterranean diet: insights from the PREDIMED study. Prog. Cardiovasc. Dis.58(1), 50–60 (2015).
  • Arpón A , Riezu-BojJI , MilagroFIet al. Adherence to Mediterranean diet is associated with methylation changes in inflammation-related genes in peripheral blood cells. J. Physiol. Biochem.73(3), 445–455 (2017).
  • Canouil M , KhamisA , KeikkalaEet al. Epigenome-wide association study reveals methylation loci associated with offspring gestational diabetes mellitus exposure and maternal methylome. Diabetes Care44(9), 1992–1999 (2021).
  • Tobi EW , Juvinao-QuinteroDL , RonkainenJet al. Maternal glycemic dysregulation during pregnancy and neonatal blood DNA methylation: meta-analyses of epigenome-wide association studies. Diabetes Care45(3), 614–623 (2022).
  • Mozaffarian D . Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation133(2), 187–225 (2016).
  • Boeke CE , BaccarelliA , KleinmanKPet al. Gestational intake of methyl donors and global LINE-1 DNA methylation in maternal and cord blood: prospective results from a folate-replete population. Epigenetics7(3), 253–260 (2012).
  • Azzi S , SasTCJ , KoudouYet al. Degree of methylation ofZAC1(PLAGL1) is associated with prenatal and post-natal growth in healthy infants of the EDEN mother child cohort. Epigenetics9(3), 338–345 (2014).
  • Martin CL , JimaD , SharpGCet al. Maternal pre-pregnancy obesity, offspring cord blood DNA methylation, and offspring cardiometabolic health in early childhood: an epigenome-wide association study. Epigenetics14(4), 325–340 (2019).
  • Obesity. WHO, Geneva Switzerland (2022).
  • Prevalence of Obesity. World Obesity Federation , London, UK (2022).
  • Klein S , GastaldelliA , Yki-JärvinenH , SchererPE. Why does obesity cause diabetes?Cell Metab.34(1), 11–20 (2022).
  • Guarasci F , D’AquilaP , MandalàMet al. Aging and nutrition induce tissue-specific changes on global DNA methylation status in rats. Mech. Ageing Dev.174, 47–54 (2018).
  • Tobi EW , SliekerRC , LuijkRet al. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Sci. Adv.4(1), eaao4364 (2018).
  • Christensen BC , KelseyKT , ZhengSet al. Breast cancer DNA methylation profiles are associated with tumor size and alcohol and folate intake. PLoS Genet.6(7), e1001043 (2010).
  • Liu C , MarioniRE , HedmanÅKet al. A DNA methylation biomarker of alcohol consumption. Mol. Psychiatry23(2), 422–433 (2018).
  • Ma J , RebholzCM , BraunKVEet al. Whole blood DNA methylation signatures of diet are associated with cardiovascular disease risk factors and all-cause mortality. Circ. Genom. Precis. Med.13(4), e002766 (2020).
  • ElGendy K , MalcomsonFC , LaraJG , BradburnDM , MathersJC. Effects of dietary interventions on DNA methylation in adult humans: systematic review and meta-analysis. Br. J. Nutr.120(9), 961–976 (2018).
  • Arpón A , MilagroFI , RazquinCet al. Impact of consuming extra-virgin olive oil or nuts within a Mediterranean diet on DNA methylation in peripheral white blood cells within the PREDIMED-Navarra randomized controlled trial: a role for dietary lipids. Nutrients10(1), 15 (2017).
  • Perfilyev A , DahlmanI , GillbergLet al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am. J. Clin. Nutr.105(4), 991–1000 (2017).
  • Samblas M , MansegoML , ZuletMA , MilagroFI , MartinezJA. An integrated transcriptomic and epigenomic analysis identifies CD44 gene as a potential biomarker for weight loss within an energy-restricted program. Eur. J. Nutr.58(5), 1971–1980 (2019).
  • Nicoletti CF , Cortes-OliveiraC , NoronhaNYet al. DNA methylation pattern changes following a short-term hypocaloric diet in women with obesity. Eur. J. Clin. Nutr.74(9), 1345–1353 (2020).
  • Keller M , YaskolkaMeir A , BernhartSHet al. DNA methylation signature in blood mirrors successful weight-loss during lifestyle interventions: the CENTRAL trial. Genome Med.12(1), 97 (2020).
  • Aslibekyan S , DemerathEW , MendelsonMet al. Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference. Obesity (Silver Spring)23(7), 1493–1501 (2015).
  • Lai CQ , ParnellLD , SmithCEet al. Carbohydrate and fat intake associated with risk of metabolic diseases through epigenetics of CPT1A. Am. J. Clin. Nutr.112(5), 1200–1211 (2020).
  • Wahl S , DrongA , LehneBet al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature541(7635), 81–86 (2017).
  • Khan MAB , HashimMJ , KingJK , GovenderRD , MustafaH , AlKaabi J. Epidemiology of Type 2 diabetes – global burden of disease and forecasted trends. J. Epidemiol. Glob. Health10(1), 107–111 (2020).
  • Raciti GA , LongoM , ParrilloLet al. Understanding Type 2 diabetes: from genetics to epigenetics. Acta Diabetol.52(5), 821–827 (2015).
  • Juvinao-Quintero DL , MarioniRE , Ochoa-RosalesCet al. DNA methylation of blood cells is associated with prevalent Type 2 diabetes in a meta-analysis of four European cohorts. Clin. Epigenetics13(1), 40 (2021).
  • Guo W , ZhangZ , LiLet al. Gut microbiota induces DNA methylation via SCFAs predisposing obesity-prone individuals to diabetes. Pharmacol. Res.182, 106355 (2022).
  • Assmann TS , Riezu-BojJI , MilagroFI , MartínezJA. Circulating adiposity-related microRNAs as predictors of the response to a low-fat diet in subjects with obesity. J. Cell. Mol. Med.24(5), 2956–2967 (2020).
  • Cui J , ZhouB , RossSA , ZempleniJ. Nutrition, microRNAs, and human health. Adv. Nutr.8(1), 105–112 (2017).
  • Kristensen LS , AndersenMS , StagstedLVW , EbbesenKK , HansenTB , KjemsJ. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet.20(11), 675–691 (2019).
  • Suzuki H , ZuoY , WangJ , ZhangMQ , MalhotraA , MayedaA. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res.34(8), e63 (2006).
  • Jarlstad Olesen MT , S KristensenL. Circular RNAs as microRNA sponges: evidence and controversies. Essays Biochem.65(4), 685–696 (2021).
  • Li Q , GengS , YuanHet al. Circular RNA expression profiles in extracellular vesicles from the plasma of patients with pancreatic ductal adenocarcinoma. FEBS Open Bio.9(12), 2052–2062 (2019).
  • Wang Y , WuC , DuYet al. Expanding uncapped translation and emerging function of circular RNA in carcinomas and noncarcinomas. Mol. Cancer21(1), 13 (2022).
  • Huang A , ZhengH , WuZ , ChenM , HuangY. Circular RNA–protein interactions: functions, mechanisms, and identification. Theranostics10(8), 3503–3517 (2020).
  • Liu CX , LiX , NanFet al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell177(4), 865–880.e21 (2019).
  • Chen X , ZhouM , YantL , HuangC. Circular RNA in disease: basic properties and biomedical relevance. Wiley Interdiscip. Rev. RNAe1723 (2022).doi:10.1002/wrna.1723 ( Epub ahead of print).
  • Zhang Y , TianZ , YeHet al. Emerging functions of circular RNA in the regulation of adipocyte metabolism and obesity. Cell Death Discov.8(1), 268 (2022).
  • Sun W , SunX , ChuW , YuS , DongF , XuG. circRNA expression profiles in human visceral preadipocytes and adipocytes. Mol. Med. Rep.21(2), 815–821 (2020).
  • Wang S , ZhangC , ZhangX. Downregulation of long non-coding RNA ANRIL promotes proliferation and migration in hypoxic human pulmonary artery smooth muscle cells. Mol. Med. Rep.21(2), 589–596 (2020).
  • Sun W , SunX , ChuW , YuS , DongF , XuG. circRNA expression profiles in human visceral preadipocytes and adipocytes. Mol. Med. Rep.21(2), 815–821 (2020).
  • Liu Y , LiuH , LiYet al. Circular RNA SAMD4A controls adipogenesis in obesity through the miR-138-5p/EZH2 axis. Theranostics10(10), 4705–4719 (2020).
  • Arcinas C , TanW , FangWet al. Adipose circular RNAs exhibit dynamic regulation in obesity and functional role in adipogenesis. Nat. Metab.1(7), 688–703 (2019).
  • Yoon G , LimYH , JoD , RyuJ , SongJ , KimYK. Obesity-linked circular RNA circTshz2-2 regulates the neuronal cell cycle and spatial memory in the brain. Mol. Psychiatry26(11), 6350–6364 (2021).
  • Zhang H , ZhuL , BaiMet al. Exosomal circRNA derived from gastric tumor promotes white adipose browning by targeting the miR-133/PRDM16 pathway. Int. J. Cancer144(10), 2501–2515 (2019).
  • Zhu Y , GuiW , LinX , LiH. Knock-down of circular RNA H19 induces human adipose-derived stem cells adipogenic differentiation via a mechanism involving the polypyrimidine tract-binding protein 1. Exp. Cell Res.387(2), 111753 (2020).
  • Maurice J , ManousouP. Non-alcoholic fatty liver disease. Clin. Med. (Lond)18(3), 245–250 (2018).
  • Yan L , ChenYG. One ring to rule them all: mitochondrial circular RNAs control mitochondrial function. Cell183(1), 11–13 (2020).
  • Barrero MJ , CejasP , LongHW , de MolinaAR. Nutritional epigenetics in cancer. Adv. Nutr.14, nmac039 (2022).
  • Maiuolo J , GliozziM , CarresiCet al. Nutraceuticals and cancer: potential for natural polyphenols. Nutrients13(11), 3834 (2021).
  • Prendeville H , LynchL. Diet, lipids, and antitumor immunity. Cell. Mol. Immunol.19(3), 432–444 (2022).
  • Taylor SR , FalconeJN , CantleyLC , GoncalvesMD. Developing dietary interventions as therapy for cancer. Nat. Rev. Cancer22(8), 452–466 (2022).
  • Sapienza C , IssaJP. Diet, nutrition, and cancer epigenetics. Annu. Rev. Nutr.36, 665–681 (2016).
  • de Assis S , WarriA , CruzMIet al. High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspring. Nat. Commun.3, 1053 (2012).
  • Ly A , LeeH , ChenJet al. Effect of maternal and postweaning folic acid supplementation on mammary tumor risk in the offspring. Cancer Res.71(3), 988–997 (2011).
  • Fontelles CC , CarneyE , ClarkeJet al. Paternal overweight is associated with increased breast cancer risk in daughters in a mouse model. Sci. Rep.6, 28602 (2016).
  • da Cruz RS , CarneyEJ , ClarkeJet al. Paternal malnutrition programs breast cancer risk and tumor metabolism in offspring. Breast Cancer Res.20(1), 99 (2018).
  • Duca RB , MassilloC , DaltonGNet al. miR-19b-3p and miR-101-3p as potential biomarkers for prostate cancer diagnosis and prognosis. Am. J. Cancer Res.11(6), 2802–2820 (2021).
  • Horniblow RD , PathakP , BalaccoDLet al. Iron-mediated epigenetic activation of NRF2 targets. J. Nutr. Biochem.101, 108929 (2022).
  • Olivo-Marston SE , HurstingSD , PerkinsSNet al. Effects of calorie restriction and diet-induced obesity on murine colon carcinogenesis, growth and inflammatory factors, and microRNA expression. PLOS ONE9(4), e94765 (2014).
  • Boycott C , BeetchM , YangTet al. Epigenetic aberrations of gene expression in a rat model of hepatocellular carcinoma. Epigenetics17(11), 1513–1534 (2022).
  • Sun Y , WangQ , ZhangYet al. Multigenerational maternal obesity increases the incidence of HCC in offspring via miR-27a-3p. J. Hepatol.73(3), 603–615 (2020).
  • Pascual G , DomínguezD , Elosúa-BayesMet al. Dietary palmitic acid promotes a prometastatic memory via Schwann cells. Nature599(7885), 485–490 (2021).
  • Bishop KS , FergusonLR. The interaction between epigenetics, nutrition and the development of cancer. Nutrients7(2), 922–947 (2015).
  • Abbas A , WitteT , PattersonWL3rdet al. Epigenetic reprogramming mediated by maternal diet rich in omega-3 fatty acids protects from breast cancer development in F1 offspring. Front. Cell. Dev. Biol.9, 682593 (2021).
  • Ion G , AkinseteJA , HardmanWE. Maternal consumption of canola oil suppressed mammary gland tumorigenesis in C3(1) TAg mice offspring. BMC Cancer10, 81 (2010).
  • Li J , LiK , GaoJet al. Maternal exposure to an n-3 polyunsaturated fatty acid diet decreases mammary cancer risk of female offspring in adulthood. Food Funct.9(11), 5768–5777 (2018).
  • Fontelles CC , GuidoLN , RosimMPet al. Paternal programming of breast cancer risk in daughters in a rat model: opposing effects of animal- and plant-based high-fat diets. Breast Cancer Res.18(1), 71 (2016).
  • Sie KK , MedlineA , van WeelJet al. Effect of maternal and postweaning folic acid supplementation on colorectal cancer risk in the offspring. Gut60(12), 1687–1694 (2011).
  • Liu M , OhtaniH , ZhouWet al. Vitamin C increases viral mimicry induced by 5-aza-2’-deoxycytidine. Proc. Natl Acad. Sci. USA113(37), 10238–10244 (2016).
  • Huang Y , KhorTO , ShuLet al. A γ-tocopherol-rich mixture of tocopherols maintains Nrf2 expression in prostate tumors of TRAMP mice via epigenetic inhibition of CpG methylation. J. Nutr.142(5), 818–823 (2012).
  • Cimmino L , DolgalevI , WangYet al. Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell170(6), 1079–1095.e20 (2017).
  • Kanarek N , PetrovaB , SabatiniDM. Dietary modifications for enhanced cancer therapy. Nature579(7800), 507–517 (2020).
  • Richmond JM , HarrisJE. Immunology and skin in health and disease. Cold Spring Harb. Perspect. Med.4(12), a015339 (2014).
  • Rodríguez E , EyerichK , WeidingerS. Genetik häufiger chronisch-entzündlicher Hauterkrankungen: Ein Update zu atopischem Ekzem und Psoriasis [Genetics of common chronic inflammatory skin diseases: an update on atopic dermatitis and psoriasis]. Hautarzt62(2), 107–118 (2011).
  • Möbus L , WeidingerS , EmmertH. Epigenetic factors involved in the pathophysiology of inflammatory skin diseases. J. Allergy Clin. Immunol.145(4), 1049–1060 (2020).
  • Moltrasio C , RomagnuoloM , MarzanoAV. Epigenetic mechanisms of epidermal differentiation. Int. J. Mol. Sci.23(9), 4874 (2022).
  • Hollingsworth JW , MaruokaS , BoonKet al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J. Clin. Invest.126(5), 2012 (2016).
  • Kocic H , DamianiG , StamenkovicBet al. Dietary compounds as potential modulators of microRNA expression in psoriasis. Ther. Adv. Chronic Dis.10, 2040622319864805 (2019).
  • Latruffe N , LançonA , FrazziRet al. Exploring new ways of regulation by resveratrol involving miRNAs, with emphasis on inflammation. Ann. NY Acad. Sci.1348, 97–106 (2015).
  • Borgia F , PeterleL , CusturoneP , VaccaroM , PioggiaG , GangemiS. microRNA cross-involvement in acne vulgaris and hidradenitis suppurativa: a literature review. Int. J. Mol. Sci.23(6), 3241 (2022).
  • Moltrasio C , TricaricoPM , GenoveseG , GrattonR , MarzanoAV , CrovellaS. 25-Hydroxyvitamin D serum levels inversely correlate to disease severity and serum C-reactive protein levels in patients with hidradenitis suppurativa. J. Dermatol.48(5), 715–717 (2021).
  • Brandao L , MouraR , TricaricoPMet al. Altered keratinization and vitamin D metabolism may be key pathogenetic pathways in syndromic hidradenitis suppurativa: a novel whole exome sequencing approach. J. Dermatol. Sci.99(1), 17–22 (2020).
  • Van Gronigen Case G , StoreyKM , ParmeleyLE , SchulzLC. Effects of maternal nutrient restriction during the periconceptional period on placental development in the mouse. PLOS ONE16(1), e0244971 (2021).
  • Claycombe-Larson KG , BundyAN , RoemmichJN. Paternal high-fat diet and exercise regulate sperm miRNA and histone methylation to modify placental inflammation, nutrient transporter mRNA expression and fetal weight in a sex-dependent manner. J. Nutr. Biochem.81, 108373 (2020).
  • Yajnik CS . Transmission of obesity-adiposity and related disorders from the mother to the baby. Ann. Nutr. Metab.64(Suppl. 1), S8–S17 (2014).
  • Park JH , KimSH , LeeMS , KimMS. Epigenetic modification by dietary factors: implications in metabolic syndrome. Mol. Aspects Med.54, 58–70 (2017).
  • Klemp I , HoffmannA , MüllerLet al. DNA methylation patterns reflect individual’s lifestyle independent of obesity. Clin. Transl. Med.12(6), e851 (2022).
  • Coppedè F . Targeting the epigenome to treat neurodegenerative diseases or delay their onset: a perspective. Neural Regen. Res.17(8), 1745–1747 (2022).
  • Vehmeijer FOL , KüpersLK , SharpGCet al. DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies. Genome Med.12(1), 105 (2020).
  • Lauschke VM , BarraganI , Ingelman-SundbergM. Pharmacoepigenetics and toxicoepigenetics: novel mechanistic insights and therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol.58, 161–185 (2018).
  • Zaccara S , RiesRJ , JaffreySR. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol.20(10), 608–624 (2019).
  • Zhong H , TangHF , KaiY. N6-methyladenine RNA modification (m6A): an emerging regulator of metabolic diseases. Curr. Drug Targets21(11), 1056–1067 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.