3,131
Views
0
CrossRef citations to date
0
Altmetric
Review

DNA methylation episignatures: insight into copy number variation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1373-1388 | Received 17 Aug 2022, Accepted 23 Nov 2022, Published online: 20 Dec 2022

References

  • Cacabelos R , TelladoI , CacabelosP. The epigenetic machinery in the life cycle and pharmacoepigenetics. In: Pharmacoepigenetics.Elsevier, Amsterdam, The Netherlands, 1–100 (2019).
  • Fahrner JA , BjornssonHT. Mendelian disorders of the epigenetic machinery: tipping the balance of chromatin states. Annu. Rev. Genomics Hum. Genet.15, 269–293 (2014).
  • Lyko F . The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet.19(2), 81–92 (2018).
  • Hargreaves DC , CrabtreeGR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res.21(3), 396–420 (2011).
  • Poh WJ , WeeCPP , GaoZ. DNA methyltransferase activity assays: advances and challenges. Theranostics6(3), 369–391 (2016).
  • Gibson WT , HoodRL , ZhanSHet al. Mutations in EZH2 cause weaver syndrome. Am. J. Hum. Genet.90(1), 110–118 (2012).
  • Bjornsson HT . The Mendelian disorders of the epigenetic machinery. Genome Res.25(10), 1473–1481 (2015).
  • Churchill FB . William Johannsen and the genotype concept. J. Hist. Biol.7(1), 5–30 (1974).
  • Ahnert SE . Structural properties of genotype–phenotype maps. JR Soc. Interface14(132), 20170275 (2017).
  • Gibney ER , NolanCM. Epigenetics and gene expression. Heredity (Edinb.)105(1), 4–13 (2010).
  • Abel HJ , DuncavageEJ. Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. Cancer Genet.206(12), 432–440 (2013).
  • Zhang Y , HaraksinghR , GrubertFet al. Child development and structural variation in the human genome. Child Dev.84(1), 34–48 (2013).
  • Rice AM , MclysaghtA. Dosage-sensitive genes in evolution and disease. BMC Biol.15(1), 78 (2017).
  • Yamasaki M , MakinoT , KhorSSet al. Sensitivity to gene dosage and gene expression affects genes with copy number variants observed among neuropsychiatric diseases. BMC Med. Genomics13(1), 55 (2020).
  • Collins RL , BrandH , KarczewskiKJet al. A structural variation reference for medical and population genetics Aggregation Database Production Team*, Genome Aggregation Database Consortium*. Nature581, 444 doi:10.1038/s41586-020-2287-82020) ( Online).
  • Karczewski KJ , FrancioliLC , TiaoGet al. The mutational constraint spectrum quantified from variation in 141,456 humans, Genome Aggregation Database Consortium. Nature581, 434,doi:10.1038/s41586-020-2308-72020) ( Online).
  • Zarrei M , MacDonaldJR , MericoD , SchererSW. A copy number variation map of the human genome. Nat. Rev. Genet.16(3), 172–183 (2015).
  • Huang N , LeeI , MarcotteEM , HurlesME. Characterising and predicting haploinsufficiency in the human genome. PLOS Genet.6(10), 1–11 (2010).
  • Davoli T , XuAW , MengwasserKEet al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell155(4), 948 (2013).
  • Tatton-Brown K , ColeTR , RahmanNet al. Sotos Syndrome. In: Gene Reviews.Seattle, WA (2004).
  • Zhang H , LuX , BeasleyJet al. Reversed clinical phenotype due to a microduplication of Sotos syndrome region detected by array CGH: microcephaly, developmental delay and delayed bone age. Am. J. Med. Genet. A155(6), 1374–1378 (2011).
  • Dikow N , MaasB , GasparHet al. The phenotypic spectrum of duplication 5q35.2–q35.3 encompassing NSD1: is it really a reversed sotos syndrome? Am. J. Med. Genet. A 161(9), 2158–2166 (2013).
  • Brunetti-Pierri N , BergJS , ScagliaFet al. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat. Genet.40(12), 1466–1471 (2008).
  • Lebon S , ChenQ , Martin-BrevetSet al. Defining the effect of the 16p11.2 duplication on cognition, behavior, and medical comorbidities. JAMA Psychiatry73(1), 20–30 (2016). doi:10.1001/jamapsychiatry.2015.2123
  • Jacquemont S , ReymondA , ZuffereyFet al. Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature478(7367), 97–102 (2011).
  • Leblanc JJ , NelsonCA. Deletion and duplication of 16p11.2 are associated with opposing effects on visual evoked potential amplitude. Mol. Autism7(1), 30 (2016).
  • Chung WK , RobertsTP , SherrEH , SnyderLAG , SpiroJE. 16p11.2 deletion syndrome. Curr. Opin. Genet. Dev.68, 49–56 (2021).
  • Adamo A , AtashpazS , GermainPLet al. 7q11.23 dosage-dependent dysregulation in human pluripotent stem cells affects transcriptional programs in disease-relevant lineages. Nat. Genet.47(2), 132–141 (2015).
  • Strong E , ButcherDT , SinghaniaRet al. Symmetrical dose-dependent DNA-methylation profiles in children with deletion or duplication of 7q11.23. Am. J. Hum. Genet.97(2), 216–227 (2015).
  • Nussinov R , TsaiCJ , JangH. Protein ensembles link genotype to phenotype. PLOS Comput. Biol.15(6), e1006648 (2019).
  • Smajlagić D , LavrichenkoK , BerlandSet al. Population prevalence and inheritance pattern of recurrent CNVs associated with neurodevelopmental disorders in 12,252 newborns and their parents. Eur. J. Hum. Genet.29(1), 205–215 (2021).
  • Nowakowska B . Clinical interpretation of copy number variants in the human genome. J. Appl. Genet.58(4), 449–457 (2017).
  • Kerkhof J , SqueoGM , McConkeyHet al. DNA methylation episignature testing improves molecular diagnosis of Mendelian chromatinopathies. Genet. Med.24(1), 51–60 (2022).
  • Vidal S , XiolC , Pascual-alonsoA , O’callaghanM , PinedaM , ArmstrongJ. Genetic landscape of Rett syndrome spectrum: improvements and challenges. Int. J. Mol. Sci.20(16), 3925 (2019).
  • Wan TSK , HuiEKC , NgMHL. Chromosome recognition. Methods Mol. Biol.1541, 67–74 (2017).
  • Imataka G , ArisakaO. Chromosome analysis using spectral karyotyping (SKY). Cell Biochem. Biophys.62(1), 13–17 (2012).
  • Lichtenbelt KD , KnoersNVAM , Schuring-BlomGH. From karyotyping to array-CGH in prenatal diagnosis. Cytogenet. Genome Res.135(3–4), 241–250 (2011).
  • Vance GH . Cytogenetics/cytogenomics. In: Rodak’s Hematology.Elsevier, Amsterdam, The Netherlands, 525–539 (2020).
  • Miller DT , AdamMP , AradhyaSet al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet.86(5), 749–764 (2010).
  • Y atsenko SA , ShawCA , OuZet al. Microarray-based comparative genomic hybridization using sex-matched reference DNA provides greater sensitivity for detection of sex chromosome imbalances than array-comparative genomic hybridization with sex-mismatched reference DNA. J. Mol. Diagn.11(3), 226–237 (2009).
  • Cheung SW , BiW. Novel applications of array comparative genomic hybridization in molecular diagnostics. Expert Rev. Mol. Diagn.18(6), 531–542 (2018).
  • Levy B , BurnsideRD. Are all chromosome microarrays the same? What clinicians need to know. Prenat. Diagn.39(3), 157–164 (2019).
  • Carter NP . Methods and strategies for analyzing copy number variation using DNA microarrays. Nat. Genet.39(Suppl. 7), S16–S21 (2007).
  • Vorstman JAS , JalaliGR , RappaportEF , HackerAM , ScottC , EmanuelBS. MLPA: a rapid, reliable, and sensitive method for detection and analysis of abnormalities of 22q. Hum. Mutat.27(8), 814–821 (2006).
  • Fernández L , LapunzinaP , ArjonaDet al. Comparative study of three diagnostic approaches (FISH, STRs and MLPA) in 30 patients with 22q11.2 deletion syndrome. Clin. Genet.68(4), 373–378 (2005).
  • Sørensen KM , AgergaardP , OlesenCet al. Detecting 22q11.2 deletions by use of multiplex ligation-dependent probe amplification on DNA from neonatal dried blood spot samples. J. Mol. Diagn.12(2), 147–151 (2010).
  • Anwar Iqbal M , BroeckelU , LevyBet al. Multi-site technical performance and concordance of optical genome mapping: constitutional postnatal study for SV, CNV, and repeat array analysis. medRxiv doi:10.1101/2021.12.27.21268432 ( Online) ( Epub ahead of print).
  • Cope H , BarseghyanH , BhattacharyaSet al. Detection of a mosaic CDKL5 deletion and inversion by optical genome mapping ends an exhaustive diagnostic odyssey. Mol. Genet. Genomic Med.9(7), e1665 (2021).
  • Sahajpal NS , BarseghyanH , KolheR , HastieA , ChaubeyA. Optical genome mapping as a next-generation cytogenomic tool for detection of structural and copy number variations for prenatal genomic analyses. Genes (Basel)12(3), 398 (2021).
  • N urk S , KorenS , RhieAet al. The complete sequence of a human genome. Science376(6588), 44–53 (2022).
  • Jelin AC , VoraN. Whole exome sequencing: applications in prenatal genetics. Obstet. Gynecol. Clin. North Am.45(1), 69–81 (2018).
  • Pirooznia M , GoesF , ZandiPP. Whole-genome CNV analysis: advances in computational approaches. Front. Genet.6(APR), 138 (2015).
  • Garrido-Cardenas JA , Garcia-MarotoF , Alvarez-BermejoJA , Manzano-AgugliaroF. DNA sequencing sensors: an overview. Sensors (Switzerland)17(3), 588 (2017).
  • Majewski J , SchwartzentruberJ , LalondeE , MontpetitA , JabadoN. What can exome sequencing do for you?J. Med. Genet.48(9), 580–589 (2011).
  • Liang WS , StephensonK , AdkinsJet al. Whole exome library construction for next generation sequencing. In: Methods in Molecular Biology.Humana Press Inc., NJ, USA, 163–174 (2018).
  • Kerkhof J , SchenkelLC , ReillyJet al. Clinical validation of copy number variant detection from targeted next-generation sequencing panels. J. Mol. Diagn.19(6), 905–920 (2017).
  • M anickam K , McClainMR , DemmerLAet al. Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet. Med.23(11), 2029–2037 (2021).
  • Brown CG , ClarkeJ. Nanopore development at Oxford Nanopore. Nat. Biotechnol.34(8), 810–811 (2016).
  • Kono N , ArakawaK. Nanopore sequencing: review of potential applications in functional genomics. Dev. Growth Differ.61(5), 316–326 (2019).
  • Xiao T , ZhouW. The third generation sequencing: the advanced approach to genetic diseases. Transl. Pediatr.9(2), 163–173 (2020).
  • Charnaud S , MunroJE , SemenecLet al. PacBio long-read amplicon sequencing enables scalable high-resolution population allele typing of the complex CYP2D6 locus. Commun. Biol.5(1), 168 (2022).
  • L evy MA , McConkeyH , KerkhofJet al. Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. HGG Adv.3(1), 100075 (2021).
  • Sadikovic B , LeviMA , KerkhofJet al. Clinical epigenomics: genome-wide DNA methylation analysis for the diagnosis of Mendelian disorders. Genet. Med.3(1), 1–10 (2021).
  • Aref-Eshghi E , KerkhofJ , PedroVPet al. Evaluation of DNA methylation episignatures for diagnosis and phenotype correlations in 42 Mendelian neurodevelopmental disorders. Am. J. Hum. Genet.106(3), 356–370 (2020).
  • Schenkel LC , Aref-EshghiE , RooneyKet al. DNA methylation epi-signature is associated with two molecularly and phenotypically distinct clinical subtypes of Phelan-McDermid syndrome. Cin. Epigenetics13(1), 1–17 (2021). doi:10.1186/s13148-020-00990-7
  • Aref-Eshghi E , BendEG , ColaiacovoSet al. Diagnostic utility of genome-wide DNA methylation testing in genetically unsolved individuals with suspected hereditary conditions. Am. J. Hum. Genet.104(4), 685–700 doi:10.1016/j.ajhg.2019.03.008 (2019) ( Online).
  • Schenkel LC , Aref-EshghiE , SkinnerCet al. Peripheral blood epi-signature of Claes–Jensen syndrome enables sensitive and specific identification of patients and healthy carriers with pathogenic mutations in KDM5C. Clin.Epigenetics.10(1), 1–11 (2018).
  • Hood RL , SchenkelLC , NikkelSMet al. The defining DNA methylation signature of Floating–Harbor Syndrome. Sci. Rep.6, 1–9 (2016) ( Online).
  • S chenkel LC , KernohanKD , McBrideAet al. Identification of epigenetic signature associated with alpha thalassemia/mental retardation X-linked syndrome. Epigenetics Chromatin10(1), 1–11 (2017).
  • Aref-Eshghi E , SchenkelLC , LinHet al. Clinical validation of a genome-wide DNA methylation assay for molecular diagnosis of imprinting disorders. J. Mol. Diagn.19(6), 848–856 doi:10.1016/j.jmoldx.2017.07.002 (2017). ( Online).
  • Joustra VW , LiYim AYF , de BruynJRet al. Peripheral blood DNA methylation profiles do not predict endoscopic post-operative recurrence in Crohn’s disease patients. Int. J. Mol. Sci.23(18), 10467 (2022).
  • Naue J , HoefslootHCJ , MookORFet al. Chronological age prediction based on DNA methylation: massive parallel sequencing and random forest regression. Forensic Sci. Int. Genet.31, 19–28 (2017).
  • Olson RS , UrbanowiczRJ , AndrewsPC , LavenderNA , KiddLC , MooreJH. Automating biomedical data science through tree-based pipeline optimization. (2016). http://arxiv.org/abs/1601.07925
  • Rooney K , LevyMA , HaghshenasSet al. Identification of a DNA methylation episignature in the 22q11.2 deletion syndrome. Int. J. Mol. Sci.22(16), 8611 (2021).
  • Rooney K , SadikovicB. DNA methylation episignatures in neurodevelopmental disorders associated with large structural copy number variants: clinical implications. Int. J. Mol. Sci.23(14), 7862 (2022). www.mdpi.com/1422-0067/23/14/7862
  • Zhou J , ZhengY , LiangGet al. Atypical deletion of Williams–Beuren syndrome reveals the mechanism of neurodevelopmental disorders. BMC Med. Genomics15(1), 79 (2022).
  • Xiao A , LiH , ShechterDet al. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature457(7225), 57–62 (2009).
  • Paternoster V , EdhagerAV , QvistPet al. Inactivation of the schizophrenia-associated BRD1 gene in brain causes failure-to-thrive, seizure susceptibility and abnormal histone H3 acetylation and N-tail clipping. Mol. Neurobiol.58(9), 4495–4505 (2021).
  • L oviglio MN , LeleuM , MännikKet al. Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes. Mol. Psychiatry22(6), 836–849 (2017).
  • Siu MT , ButcherDT , TurinskyALet al. Functional DNA methylation signatures for autism spectrum disorder genomic risk loci: 16p11.2 deletions and CHD8 variants. Cin. Epigenetics11(1), 1–19 (2019).
  • Krzyzewska IM , MaasSM , HennemanPet al. A genome-wide DNA methylation signature for SETD1B-related syndrome. Clin. Epigenetics11(1), 156 (2019).
  • Barski A , CuddapahS , CuiKet al. High-resolution profiling of histone methylations in the human genome. Cell129(4), 823–837 (2007).
  • Choufani S , CytrynbaumC , ChungBHYet al. NSD1 mutations generate a genome-wide DNA methylation signature. Nat. Commun.6, 10207 (2015).
  • Brennan K , ZhengH , FahrnerJAet al. NSD1 mutations deregulate transcription and DNA methylation of bivalent developmental genes in Sotos syndrome. Hum. Mol. Genet.31(13), 2164–2184 (2022).
  • Zhang L , SongD , ZhuB , WangX. The role of nuclear matrix protein HNRNPU in maintaining the architecture of 3D genome. Semin. Cell Dev. Biol.90, 161–167 (2019).
  • Depienne C , NavaC , KerenBet al. Genetic and phenotypic dissection of 1q43q44 microdeletion syndrome and neurodevelopmental phenotypes associated with mutations in ZBTB18 and HNRNPU. Hum. Genet.136(4), 463–479 (2017).
  • Zhu X , PetrovskiS , XiePet al. Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios. Genet. Med.17(10), 774–781 (2015).
  • Le TN , WilliamsSR , AlaimoJT , ElseaSH. Genotype and phenotype correlation in 103 individuals with 2q37 deletion syndrome reveals incomplete penetrance and supports HDAC4 as the primary genetic contributor. Am. J. Med. Genet. A179(5), 782–791 (2019).
  • Holland P , WildhagenM , IstreM , ReiakvamOM , DahlJA , SøraasA. Cri du chat syndrome patients have DNA methylation changes in genes linked to symptoms of the disease. Clin. Epigenetics14(1), 128 (2022).
  • Goodman SJ , CytrynbaumC , ChungBH-Yet al. EHMT1 pathogenic variants and 9q34.3 microdeletions share altered DNA methylation patterns in patients with Kleefstra syndrome. J.Transl. Genet. Genom.4, 144–158 (2020).
  • Aref-Eshghi E , BendEG , HoodRLet al. BAFopathies’ DNA methylation epi-signatures demonstrate diagnostic utility and functional continuum of Coffin–Siris and Nicolaides–Baraitser syndromes. Nat. Commun.9(1), 4885 (2018).
  • Ronzoni L , TagliaferriF , TucciA , BaccarinM , EspositoS , MilaniD. Interstitial 6q25 microdeletion syndrome: ARID1B is the key gene. Am. J. Med. Genet. A170(5), 1257–1261 (2016).
  • Awamleh Z , Chater-DiehlE , ChoufaniSet al. DNA methylation signature associated with Bohring–Opitz syndrome: a new tool for functional classification of variants in ASXL genes. Eur. J. Hum. Genet.30(6), 695–702 (2022).
  • Du Q , dela Morena MT , van OersNSC. The genetics and epigenetics of 22q11.2 deletion syndrome. Front. Genet.10, 1365 (2020).
  • K erkhof J , SqueoGM , McConkeyHet al. DNA methylation episignature testing improves molecular diagnosis of Mendelian chromatinopathies. Genet. Med.24(1), 51–60 (2021).