95
Views
0
CrossRef citations to date
0
Altmetric
Preliminary Communication

Integrated Analysis Revealing the Role Of TET3-Mediated MUC13 Promoter Hypomethylation in Hepatocellular Carcinogenesis

ORCID Icon, , , &
Pages 1579-1591 | Received 06 Nov 2022, Accepted 28 Feb 2023, Published online: 14 Mar 2023

References

  • Kanwal F , SingalAG. Surveillance for hepatocellular carcinoma: current best practice and future direction. Gastroenterology157(1), 54–64 (2019).
  • Bruix J , ReigM , ShermanM. Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology150(4), 835–853 (2016).
  • Villanueva A . Hepatocellular carcinoma. N. Engl. J. Med.380(15), 1450–1462 (2019).
  • Wei Y , ChenX , LiangCet al. A noncoding regulatory RNAs network driven by circ-CDYL acts specifically in the early stages hepatocellular carcinoma. Hepatologydoi:10.1002/hep.30795 (2019).
  • Ren Z , LiA , JiangJet al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut68(6), 1014–1023 (2019).
  • Zhang W , ZhangyuanG , WangFet al. The zinc finger protein Miz1 suppresses liver tumorigenesis by restricting hepatocyte-driven macrophage activation and inflammation. Immunity54(6), 1168–1185e1168 (2021).
  • Wang S , ShiH , LiuTet al. Mutation profile and its correlation with clinicopathology in Chinese hepatocellular carcinoma patients. Hepatobiliary Surg. Nutr.10(2), 172–179 (2021).
  • Lee SM , Kim-HaJ , ChoiWYet al. Interplay of genetic and epigenetic alterations in hepatocellular carcinoma. Epigenomics8(7), 993–1005 (2016).
  • Williams SJ , WreschnerDH , TranM , EyreHJ , SutherlandGR , McguckinMA. Muc13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J. Biol. Chem.276(21), 18327–18336 (2001).
  • Lamonte GM , Orjuela-SanchezP , CallaJet al. Dual RNA-seq identifies human mucosal immunity protein Mucin-13 as a hallmark of plasmodium exoerythrocytic infection. Nat. Commun.10(1), 488 (2019).
  • Sheng YH , LourieR , LindenSKet al. The MUC13 cell-surface mucin protects against intestinal inflammation by inhibiting epithelial cell apoptosis. Gut60(12), 1661–1670 (2011).
  • Chauhan SC , VannattaK , EbelingMCet al. Expression and functions of transmembrane mucin MUC13 in ovarian cancer. Cancer Res.69(3), 765–774 (2009).
  • Khan S , SikanderM , EbelingMCet al. MUC13 interaction with receptor tyrosine kinase HER2 drives pancreatic ductal adenocarcinoma progression. Oncogene36(4), 491–500 (2017).
  • Sheng YH , HeY , HasnainSZet al. MUC13 protects colorectal cancer cells from death by activating the NF-kappaB pathway and is a potential therapeutic target. Oncogene36(5), 700–713 (2017).
  • Tirosh I , VenteicherAS , HebertCet al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature539(7628), 309–313 (2016).
  • Nieto MA . Epithelial plasticity: a common theme in embryonic and cancer cells. Science342(6159), 1234850 (2013).
  • Sanchez-Danes A , HannezoE , LarsimontJCet al. Defining the clonal dynamics leading to mouse skin tumour initiation. Nature536(7616), 298–303 (2016).
  • Jayachandran A , DhungelB , SteelJC. Epithelial-to-mesenchymal plasticity of cancer stem cells: therapeutic targets in hepatocellular carcinoma. J. Hematol. Oncol.9(1), 74 (2016).
  • Feng Y , LiuX , PauklinS. 3D chromatin architecture and epigenetic regulation in cancer stem cells. Protein Cell12(6), 440–454 (2021).
  • Chen L , KongR , WuCet al. Circ-MALAT1 functions as both an mRNA translation Brake and a microRNA sponge to promote self-renewal of hepatocellular cancer stem cells. Adv. Sci. (Weinh.)7(4), 1900949 (2020).
  • Rhodes DR , YuJ , ShankerKet al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia6(1), 1–6 (2004).
  • Chandrashekar DS , BashelB , BalasubramanyaSaHet al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia19(8), 649–658 (2017).
  • Vasaikar SV , StraubP , WangJ , ZhangB. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res.46(D1), D956–D963 (2018).
  • Pathan M , KeerthikumarS , AngCSet al. FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics15(15), 2597–2601 (2015).
  • Diez-Villanueva A , MallonaI , PeinadoMA. Wanderer, an interactive viewer to explore DNA methylation and gene expression data in human cancer. Epigenetics Chromatin8, 22 (2015).
  • Huang WY , HsuSD , HuangHYet al. MethHC: a database of DNA methylation and gene expression in human cancer. Nucleic Acids Res.43, D856–D861 (2015).
  • Nitta T , KimJS , MohuczyD , BehrnsKE. Murine cirrhosis induces hepatocyte epithelial mesenchymal transition and alterations in survival signaling pathways. Hepatology48(3), 909–919 (2008).
  • Llovet JM , KelleyRK , VillanuevaAet al. Hepatocellular carcinoma. Nat. Rev. Dis. Primers7(1), 6 (2021).
  • Hoo ZH , CandlishJ , TeareD. What is an ROC curve?Emerg. Med. J.34(6), 357–359 (2017).
  • Ye X , WeinbergRA. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol.25(11), 675–686 (2015).
  • Villanueva A , PortelaA , SayolsSet al. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology61(6), 1945–1956 (2015).
  • Rasmussen KD , HelinK. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev.30(7), 733–750 (2016).
  • Pulikkottil AJ , BamezaiS , AmmerTet al. TET3 promotes AML growth and epigenetically regulates glucose metabolism and leukemic stem cell associated pathways. Leukemia doi:10.1038/s41375-021-01390–3 (2021).
  • Herrmann A , LahtzC , SongJet al. Integrin alpha6 signaling induces STAT3-TET3-mediated hydroxymethylation of genes critical for maintenance of glioma stem cells. Oncogene39(10), 2156–2169 (2020).
  • Chaffer CL , WeinbergRA. A perspective on cancer cell metastasis. Science331(6024), 1559–1564 (2011).
  • Hu B , WangQ , WangYAet al. Epigenetic activation of WNT5A drives glioblastoma stem cell differentiation and invasive growth. Cell167(5), 1281–1295e1218 (2016).
  • Massague J , ObenaufAC. Metastatic colonization by circulating tumour cells. Nature529(7586), 298–306 (2016).
  • Yang JD , HainautP , GoresGJ , AmadouA , PlymothA , RobertsLR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol.16(10), 589–604 (2019).
  • Dutta R , MahatoRI. Recent advances in hepatocellular carcinoma therapy. Pharmacol. Ther.173, 106–117 (2017).
  • Feng K , YanJ , LiXet al. A randomized controlled trial of radiofrequency ablation and surgical resection in the treatment of small hepatocellular carcinoma. J. Hepatol.57(4), 794–802 (2012).
  • Cho JY , ChoiMS , LeeGSet al. Clinical significance and predictive factors of early massive recurrence after radiofrequency ablation in patients with a single small hepatocellular carcinoma. Clin. Mol. Hepatol.22(4), 477–486 (2016).
  • Forner A , LlovetJM , BruixJ. Hepatocellular carcinoma. Lancet379(9822), 1245–1255 (2012).
  • Agopian VG , Harlander-LockeMP , MarkovicDet al. Evaluation of patients with hepatocellular carcinomas that do not produce alpha-fetoprotein. JAMA Surg.152(1), 55–64 (2017).
  • Zhang XP , WangK , ChengSQ. Surveillance for early-stage hepatocellular carcinoma by ultrasound plus alpha-fetoprotein measurement: more details, more significance. Gastroenterology155(4), 1274–1275 (2018).
  • Mann J , ReevesHL , FeldsteinAE. Liquid biopsy for liver diseases. Gut67(12), 2204–2212 (2018).
  • Ye Q , LingS , ZhengS , XuX. Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. Mol. Cancer18(1), 114 (2019).
  • Lin D , ShenL , LuoMet al. Circulating tumor cells: biology and clinical significance. Signal Transduct. Target Ther.6(1), 404 (2021).
  • Ahn JC , TengPC , ChenPJet al. Detection of circulating tumor cells and their implications as a biomarker for diagnosis, prognostication, and therapeutic monitoring in hepatocellular carcinoma. Hepatology73(1), 422–436 (2021).
  • Liu Z , GuoW , ZhangDet al. Circulating tumor cell detection in hepatocellular carcinoma based on karyoplasmic ratios using imaging flow cytometry. Sci. Rep.6, 39808 (2016).
  • Brouwer A , LaereB , PeetersDet al. Evaluation and consequences of heterogeneity in the circulating tumor cell compartment. Oncotarget7(30), 48625–48643 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.