129
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Epigenetics-Based Diagnostic and Therapeutic Strategies: Shifting the Paradigm in Prostate Cancer

ORCID Icon
Pages 75-87 | Received 10 Feb 2023, Accepted 07 Mar 2023, Published online: 28 Mar 2023

References

  • Sung H , FerlayJet al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.71, 209–249 (2021).
  • U.S.P.S.T. Force , GrossmanDC , CurrySJ , OwensDKet al.Screening for prostate cancer: US Preventive Services Task Force recommendation statement. JAMA319, 1901–1913 (2018).
  • Van Poppel H , AlbrehtT , BasuP , HogenhoutR , CollenS , RoobolM. Serum PSA-based early detection of prostate cancer in Europe and globally: past, present and future. Nat. Rev. Urol.19, 562–572 (2022).
  • Zhang K , BangmaCH , RoobolMJ. Prostate cancer screening in Europe and Asia. Asian J. Urol.4, 86–95 (2017).
  • Heijnsdijk EAM , GulatiR , TsodikovAet al. Lifetime benefits and harms of prostate-specific antigen-based risk-stratified screening for prostate cancer. J. Natl Cancer Inst.112, 1013–1020 (2020).
  • Chang SL , HarshmanLC , PrestiJCJr. Impact of common medications on serum total prostate-specific antigen levels: analysis of the National Health and Nutrition Examination Survey. J. Clin. Oncol.28, 3951–3957 (2010).
  • Ilic D , DjulbegovicM , JungJHet al. Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ362, k3519 (2018).
  • Loeb S , VellekoopA , AhmedHUet al. Systematic review of complications of prostate biopsy. Eur. Urol.64, 876–892 (2013).
  • Borley N , FeneleyMR. Prostate cancer: diagnosis and staging. Asian J. Androl.11, 74–80 (2009).
  • Cristea O , LavalleeLT , MontroyJet al. Active surveillance in Canadian men with low-grade prostate cancer. CMAJ188, E141–E147 (2016).
  • Hamdy FC , DonovanJL , LaneJAet al. 10-Year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N. Engl. J. Med.375, 1415–1424 (2016).
  • Potosky AL , DavisWW , HoffmanRMet al. Five-year outcomes after prostatectomy or radiotherapy for prostate cancer: the prostate cancer outcomes study. J. Natl Cancer Inst.96, 1358–1367 (2004).
  • Banerjee R , SmithJ , EcclesMR , WeeksRJ , ChatterjeeA. Epigenetic basis and targeting of cancer metastasis. Trends Cancer8, 226–241 (2022).
  • Nepali K , LiouJP. Recent developments in epigenetic cancer therapeutics: clinical advancement and emerging trends. J. Biomed. Sci.28, 27 (2021).
  • Berger SL , KouzaridesT , ShiekhattarR , ShilatifardA. An operational definition of epigenetics. Genes Dev.23, 781–783 (2009).
  • Jerkovic I , CavalliG. Understanding 3D genome organization by multidisciplinary methods. Nat. Rev. Mol. Cell Biol.22, 511–528 (2021).
  • Bonasio R , TuS , ReinbergD. Molecular signals of epigenetic states. Science330, 612–616 (2010).
  • Zhang P , TorresK , LiuX , LiuCG , PollockRE. An overview of chromatin-regulating proteins in cells. Curr. Protein Pept. Sci.17, 401–410 (2016).
  • Holliday R , PughJE. DNA modification mechanisms and gene activity during development. Science187, 226–232 (1975).
  • Bannister AJ , KouzaridesT. Regulation of chromatin by histone modifications. Cell Res.21, 381–395 (2011).
  • Biswas S , RaoCM. Epigenetic tools (the writers, the readers and the erasers) and their implications in cancer therapy. Eur. J. Pharmacol.837, 8–24 (2018).
  • Greer EL , ShiY. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet.13, 343–357 (2012).
  • Verdone L , CasertaM , DiMauro E. Role of histone acetylation in the control of gene expression. Biochem. Cell Biol.83, 344–353 (2005).
  • Richard Boland C . Non-coding RNA: it’s not junk. Dig. Dis. Sci.62, 1107–1109 (2017).
  • Crea F , ClermontPL , ParoliaA , WangY , HelgasonCD. The non-coding transcriptome as a dynamic regulator of cancer metastasis. Cancer Metastasis Rev.33, 1–16 (2014).
  • Cech TR , SteitzJA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell157, 77–94 (2014).
  • Qian Y , ShiL , LuoZ. Long non-coding RNAs in cancer: implications for diagnosis, prognosis, and therapy. Front. Med. (Lausanne)7, 612393 (2020).
  • Chen J , WangY , WangC , HuJF , LiW. LncRNA functions as a new emerging epigenetic factor in determining the fate of stem cells. Front. Genet.11, 277 (2020).
  • Mirzaei S , GholamiMH , HushmandiKet al. The long and short non-coding RNAs modulating EZH2 signaling in cancer. J. Hematol. Oncol.15, 18 (2022).
  • John RM , RougeulleC. Developmental epigenetics: phenotype and the flexible epigenome. Front. Cell Dev. Biol.6, 130 (2018).
  • Liu Y , LiuB , JinGet al. An integrated three-long non-coding RNA signature predicts prognosis in colorectal cancer patients. Front. Oncol.9, 1269 (2019).
  • Grillone K , RiilloC , SciontiFet al. Non-coding RNAs in cancer: platforms and strategies for investigating the genomic “dark matter”. J. Exp. Clin. Cancer Res.39, 117 (2020).
  • Baca SC , GarrawayLA. The genomic landscape of prostate cancer. Front. Endocrinol. (Lausanne)3, 69 (2012).
  • Lopez J , Anazco-GuenkovaAM , Monteagudo-GarciaO , BlancoS. Epigenetic and epitranscriptomic control in prostate cancer. Genes (Basel)13, (2022).
  • Barbieri CE , BacaSC , LawrenceMSet al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet.44, 685–689 (2012).
  • Lin D , WyattAW , XueHet al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res.74, 1272–1283 (2014).
  • Moore LD , LeT , FanG. DNA methylation and its basic function. Neuropsychopharmacology38, 23–38 (2013).
  • Massie CE , MillsIG , LynchAG. The importance of DNA methylation in prostate cancer development. J. Steroid Biochem. Mol. Biol.166, 1–15 (2017).
  • Millar DS , OwKK , PaulCL , RussellPJ , MolloyPL , ClarkSJ. Detailed methylation analysis of the glutathione S-transferase pi (GSTP1) gene in prostate cancer. Oncogene18, 1313–1324 (1999).
  • Graca I , Pereira-SilvaE , HenriqueR , PackhamG , CrabbSJ , JeronimoC. Epigenetic modulators as therapeutic targets in prostate cancer. Clin. Epigenetics8, 98 (2016).
  • Chinaranagari S , SharmaP , BowenNJ , ChaudharyJ. Prostate cancer epigenome. Methods Mol. Biol.1238, 125–140 (2015).
  • Cang S , FengJ , KonnoSet al. Deficient histone acetylation and excessive deacetylase activity as epigenomic marks of prostate cancer cells. Int. J. Oncol.35, 1417–1422 (2009).
  • Li G , TianY , ZhuWG. The roles of histone deacetylases and their inhibitors in cancer therapy. Front. Cell Dev. Biol.8, 576946 (2020).
  • Suraweera A , O’ByrneKJ , RichardDJ. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front. Oncol.8, 92 (2018).
  • Hontecillas-Prieto L , Flores-CamposR , SilverA , de AlavaE , HajjiN , Garcia-DominguezDJ. Synergistic enhancement of cancer therapy using HDAC inhibitors: opportunity for clinical trials. Front. Genet.11, 578011 (2020).
  • Biersack B , NitzscheB , HopfnerM. HDAC inhibitors with potential to overcome drug resistance in castration-resistant prostate cancer. Cancer Drug Resist.5, 64–79 (2022).
  • Kaushik D , VashisthaV , IsharwalS , SediqeSA , LinMF. Histone deacetylase inhibitors in castration-resistant prostate cancer: molecular mechanism of action and recent clinical trials. Ther. Adv. Urol.7, 388–395 (2015).
  • Varambally S , DhanasekaranSM , ZhouMet al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature419, 624–629 (2002).
  • Clermont PL , CreaF , ChiangYTet al. Identification of the epigenetic reader CBX2 as a potential drug target in advanced prostate cancer. Clin. Epigenetics8, 16 (2016).
  • Blackledge NP , KloseRJ. The molecular principles of gene regulation by polycomb repressive complexes. Nat. Rev. Mol. Cell Biol.22, 815–833 (2021).
  • Guo Y , ZhaoS , WangGG. Polycomb gene silencing mechanisms: PRC2 chromatin targeting, H3K27me3 ‘readout’, and phase separation-based compaction. Trends Genet.37, 547–565 (2021).
  • Yu J , YuJ , RhodesDRet al. A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res.67, 10657–10663 (2007).
  • Ngollo M , LebertA , DauresMet al. Global analysis of H3K27me3 as an epigenetic marker in prostate cancer progression. BMC Cancer17, 261 (2017).
  • Das P , TaubeJH. Regulating methylation at H3K27: a trick or treat for cancer cell plasticity. Cancers (Basel)12, (2020).
  • Kraft K , YostKE , MurphySEet al. Polycomb-mediated genome architecture enables long-range spreading of H3K27 methylation. Proc. Natl Acad. Sci. USA119, e2201883119 (2022).
  • Mu W , StarmerJ , YeeD , MagnusonT. EZH2 variants differentially regulate polycomb repressive complex 2 in histone methylation and cell differentiation. Epigenetics Chromatin11, 71 (2018).
  • Kawaguchi T , MachidaS , KurumizakaH , TagamiH , NakayamaJI. Phosphorylation of CBX2 controls its nucleosome-binding specificity. J. Biochem.162, 343–355 (2017).
  • Sellers WR , LodaM. The EZH2 polycomb transcriptional repressor–a marker or mover of metastatic prostate cancer?Cancer Cell2, 349–350 (2002).
  • Clermont PL , LinD , CreaFet al. Polycomb-mediated silencing in neuroendocrine prostate cancer. Clin. Epigenetics7, 40 (2015).
  • Bai Y , ZhangZ , ChengLet al. Inhibition of enhancer of zeste homolog 2 (EZH2) overcomes enzalutamide resistance in castration-resistant prostate cancer. J. Biol. Chem.294, 9911–9923 (2019).
  • Yang YA , YuJ. EZH2, an epigenetic driver of prostate cancer. Protein Cell4, 331–341 (2013).
  • Kang N , EcclestonM , ClermontPLet al. EZH2 inhibition: a promising strategy to prevent cancer immune editing. Epigenomics12, 1457–1476 (2020).
  • Clermont PL , SunL , CreaFet al. Genotranscriptomic meta-analysis of the polycomb gene CBX2 in human cancers: initial evidence of an oncogenic role. Br. J. Cancer111, 1663–1672 (2014).
  • Wang S , AlpsoyA , SoodSet al. Selective CBX2 chromodomain ligand and its cellular activity during prostate cancer neuroendocrine differentiation. Chembiochem22, 2335–2344 (2021).
  • Conteduca V , HessJ , YamadaY , KuSY , BeltranH. Epigenetics in prostate cancer: clinical implications. Transl. Androl. Urol.10, 3104–3116 (2021).
  • Ci X , HaoJ , DongXet al. Heterochromatin protein 1alpha mediates development and aggressiveness of neuroendocrine prostate cancer. Cancer Res.78, 2691–2704 (2018).
  • Crea F , SunL , MaiAet al. The emerging role of histone lysine demethylases in prostate cancer. Mol. Cancer11, 52 (2012).
  • Parolia A , CieslikM , ChuSCet al. Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature571, 413–418 (2019).
  • Asangani IA , DommetiVL , WangXet al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature510, 278–282 (2014).
  • Wang Y , YuJ. Dissecting multiple roles of SUMOylation in prostate cancer. Cancer Lett.521, 88–97 (2021).
  • Mahajan K , MallaP , LawrenceHRet al. ACK1/TNK2 regulates histone H4 Tyr88-phosphorylation and AR gene expression in castration-resistant prostate cancer. Cancer Cell31, 790–803e8 (2017).
  • Nag N , DuttaS. Deubiquitination in prostate cancer progression: role of USP22. J. Cancer Metastasis Treat.6, (2020).
  • Izzo LT , AffrontiHC , WellenKE. The bidirectional relationship between cancer epigenetics and metabolism. Ann. Rev. Cancer Biol.5, 235–257 (2021).
  • Kumar S , GonzalezEA , RameshwarP , EtchegarayJP. Non-coding RNAs as mediators of epigenetic changes in malignancies. Cancers (Basel)12, (2020).
  • Yang X , LiuM , LiMet al. Epigenetic modulations of noncoding RNA: a novel dimension of cancer biology. Mol. Cancer19, 64 (2020).
  • Lemos AEG , MatosADR , FerreiraLB , GimbaERP. The long non-coding RNA PCA3: an update of its functions and clinical applications as a biomarker in prostate cancer. Oncotarget10, 6589–6603 (2019).
  • Pepe P , AragonaF. PCA3 score vs PSA free/total accuracy in prostate cancer diagnosis at repeat saturation biopsy. Anticancer Res.31, 4445–4449 (2011).
  • Rendon RA , MasonRJ , MarzoukKet al. Recommandations de l’Association des urologues du Canada sur le depistage et le diagnostic precoce du cancer de la prostate. Can. Urol. Assoc. J.11, 298–309 (2017).
  • Prensner JR , IyerMK , SahuAet al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat. Genet.45, 1392–1398 (2013).
  • Mehra R , UdagerAM , AhearnTUet al. Overexpression of the long non-coding RNA SChLAP1 independently predicts lethal prostate cancer. Eur. Urol.70, 549–552 (2016).
  • Chang J , XuW , DuX , HouJ. MALAT1 silencing suppresses prostate cancer progression by upregulating miR-1 and downregulating KRAS. Onco Targets Ther.11, 3461–3473 (2018).
  • Jiang G , SuZ , LiangX , HuangY , LanZ , JiangX. Long non-coding RNAs in prostate tumorigenesis and therapy. Mol. Clin. Oncol.13, 76 (2020).
  • Parolia A , CreaF , XueHet al. The long non-coding RNA PCGEM1 is regulated by androgen receptor activity in vivo. Mol. Cancer14, 46 (2015).
  • Parolia A , VenalainenE , XueHet al. The long noncoding RNA HORAS5 mediates castration-resistant prostate cancer survival by activating the androgen receptor transcriptional program. Mol. Oncol.13, 1121–1136 (2019).
  • Crea F , WatahikiA , QuagliataLet al. Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget5, 764–774 (2014).
  • Crea F , VenalainenE , CiXet al. The role of epigenetics and long noncoding RNA MIAT in neuroendocrine prostate cancer. Epigenomics8, 721–731 (2016).
  • Mather RL , ParoliaA , CarsonSEet al. The evolutionarily conserved long non-coding RNA LINC00261 drives neuroendocrine prostate cancer proliferation and metastasis via distinct nuclear and cytoplasmic mechanisms. Mol. Oncol.15, 1921–1941 (2021).
  • Pucci P , VenalainenE , AlborelliIet al. LncRNA HORAS5 promotes taxane resistance in castration-resistant prostate cancer via a BCL2A1-dependent mechanism. Epigenomics12, 1123–1138 (2020).
  • Misawa A , TakayamaKI , InoueS. Long non-coding RNAs and prostate cancer. Cancer Sci.108, 2107–2114 (2017).
  • Mitchell PS , ParkinRK , KrohEMet al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA105, 10513–10518 (2008).
  • Abramovic I , UlamecM , KatusicBojanac A , Bulic-JakusF , JezekD , SincicN. miRNA in prostate cancer: challenges toward translation. Epigenomics12, 543–558 (2020).
  • Crea F , QuagliataL , MichaelAet al. Integrated analysis of the prostate cancer small-nucleolar transcriptome reveals SNORA55 as a driver of prostate cancer progression. Mol. Oncol.10, 693–703 (2016).
  • Martens-Uzunova ES , HoogstrateY , KalsbeekAet al. C/D-box snoRNA-derived RNA production is associated with malignant transformation and metastatic progression in prostate cancer. Oncotarget6, 17430–17444 (2015).
  • Greene J , BairdAM , CaseyOet al. Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide. Sci. Rep.9, 10739 (2019).
  • Ronnau CG , VerhaeghGW , Luna-VelezMV , SchalkenJA. Noncoding RNAs as novel biomarkers in prostate cancer. Biomed. Res. Int.2014, 591703 (2014).
  • Bell N , ConnorGorber S , ShaneAet al. Canadian Task Force on Preventive Health Care. Recommendations on screening for prostate cancer with the prostate-specific antigen test. CMAJ186, 1225–1234 (2014).
  • Valdes-Mora F , ClarkSJ. Prostate cancer epigenetic biomarkers: next-generation technologies. Oncogene34, 1609–1618 (2015).
  • Durand X , MoutereauS , XylinasE , dela Taille A. Progensa PCA3 test for prostate cancer. Expert Rev. Mol. Diagn.11, 137–144 (2011).
  • Malavaud B , CussenotO , MottetNet al. Impact of adoption of a decision algorithm including PCA3 for repeat biopsy on the costs for prostate cancer diagnosis in France. J. Med. Econ.16, 358–363 (2013).
  • D’Adamo GL , WiddopJT , GilesEM. The future is now? Clinical and translational aspects of “omics” technologies. Immunol. Cell Biol.99, 168–176 (2021).
  • Helsmoortel H , EveraertC , LumenN , OstP , VandesompeleJ. Detecting long non-coding RNA biomarkers in prostate cancer liquid biopsies: hype or hope?Noncoding RNA Res.3, 64–74 (2018).
  • Pardini B , SaboAA , BiroloG , CalinGA. Noncoding RNAs in extracellular fluids as cancer biomarkers: the new frontier of liquid biopsies. Cancers (Basel)11, (2019).
  • Santos V , FreitasC , FernandesMGet al. Liquid biopsy: the value of different bodily fluids. Biomark. Med.16, 127–145 (2022).
  • Hu C , DignamJJ. Biomarker-driven oncology clinical trials: key design elements, types, features, and practical considerations. JCO Precis. Oncol.3, (2019).
  • Hutchinson R , LotanY. Cost consideration in utilization of multiparametric magnetic resonance imaging in prostate cancer. Transl. Androl. Urol.6, 345–354 (2017).
  • Schneider JE , SidhuMK , DoucetC , KissN , OhsfeldtRL , ChalfinD. Economics of cancer biomarkers. Per. Med.9, 829–837 (2012).
  • Qian Y , DazaJ , ItzelTet al. Prognostic cancer gene expression signatures: current status and challenges. Cells10, (2021).
  • Huo X , ZhouX , PengPet al. Identification of a six-gene signature for predicting the overall survival of cervical cancer patients. Onco Targets Ther.14, 809–822 (2021).
  • Shi K , LinW , ZhaoXM. Identifying molecular biomarkers for diseases with machine learning based on integrative omics. IEEE/ACM Trans. Comput. Biol. Bioinform.18, 2514–2525 (2021).
  • Zeuschner P , LinxweilerJ , JunkerK. Non-coding RNAs as biomarkers in liquid biopsies with a special emphasis on extracellular vesicles in urological malignancies. Expert Rev. Mol. Diagn.20, 151–167 (2020).
  • Deng J , TangJ , WangG , ZhuYS. Long non-coding RNA as potential biomarker for prostate cancer: is it making a difference?Int. J. Environ. Res. Public Health14, (2017).
  • Locke WJ , GuanzonD , MaCet al. DNA methylation cancer biomarkers: translation to the clinic. Front. Genet.10, 1150 (2019).
  • Gurioli G , MartignanoF , SalviS , CostantiniM , GunelliR , CasadioV. GSTP1 methylation in cancer: a liquid biopsy biomarker?Clin. Chem. Lab. Med.56, 702–717 (2018).
  • Sinnott JA , PeischSF , TyekuchevaSet al. Prognostic utility of a new mRNA expression signature of Gleason Score. Clin. Cancer Res.23, 81–87 (2017).
  • Huang TB , DongCP , ZhouGCet al. A potential panel of four-long noncoding RNA signature in prostate cancer predicts biochemical recurrence-free survival and disease-free survival. Int. Urol. Nephrol.49, 825–835 (2017).
  • Xin L , LiuYH , MartinTA , JiangWG. The era of multigene panels comes? The clinical utility of Oncotype DX and MammaPrint. World J. Oncol.8, 34–40 (2017).
  • Paller CJ , AntonarakisES. Management of biochemically recurrent prostate cancer after local therapy: evolving standards of care and new directions. Clin. Adv. Hematol. Oncol.11, 14–23 (2013).
  • Lam D , ClarkS , StirzakerC , PidsleyR. Advances in prognostic methylation biomarkers for prostate cancer. Cancers (Basel)12, (2020).
  • Bates SE . Epigenetic therapies for cancer. N. Engl. J. Med.383, 650–663 (2020).
  • Groselj B , SharmaNL , HamdyFC , KerrM , KiltieAE. Histone deacetylase inhibitors as radiosensitisers: effects on DNA damage signalling and repair. Br. J. Cancer108, 748–754 (2013).
  • Frame FM , PellacaniD , CollinsATet al. HDAC inhibitor confers radiosensitivity to prostate stem-like cells. Br. J. Cancer109, 3023–3033 (2013).
  • Xiao W , GrahamPH , HaoJet al. Combination therapy with the histone deacetylase inhibitor LBH589 and radiation is an effective regimen for prostate cancer cells. PLOS ONE8, e74253 (2013).
  • Crea F , HurtEM , MathewsLAet al. Pharmacologic disruption of polycomb repressive complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. Mol. Cancer10, 40 (2011).
  • Milosevich N , McFarlaneJ , GignacMCet al. Pan-specific and partially selective dye-labeled peptidic inhibitors of the polycomb paralog proteins. Bioorg. Med. Chem.28, 115176 (2020).
  • Gieni RS , IsmailIH , CampbellS , HendzelMJ. Polycomb group proteins in the DNA damage response: a link between radiation resistance and “stemness”. Cell Cycle10, 883–894 (2011).
  • Tsimberidou AM , FountzilasE , NikanjamM , KurzrockR. Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat. Rev.86, 102019 (2020).
  • Iqbal N , IqbalN. Imatinib: a breakthrough of targeted therapy in cancer. Chemother. Res. Pract.2014, 357027 (2014).
  • Jeyakumar A , YounisT. Trastuzumab for HER2-positive metastatic breast cancer: clinical and economic considerations. Clin. Med. Insights Oncol.6, 179–187 (2012).
  • Yan W , HermanJG , GuoM. Epigenome-based personalized medicine in human cancer. Epigenomics8, 119–133 (2016).
  • Winkle M , El-DalySM , FabbriM , CalinGA. Noncoding RNA therapeutics - challenges and potential solutions. Nat. Rev. Drug Discov.20, 629–651 (2021).
  • Quemener AM , BachelotL , ForestierA , Donnou-FournetE , GilotD , GalibertMD. The powerful world of antisense oligonucleotides: from bench to bedside. Wiley Interdiscip. Rev. RNA11, e1594 (2020).
  • Mahmoodi Chalbatani G , DanaH , GharagouzlooEet al. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int. J. Nanomedicine14, 3111–3128 (2019).
  • Geary RS , NorrisD , YuR , BennettCF. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv. Drug Deliv. Rev.87, 46–51 (2015).
  • Herkt M , ThumT. Pharmacokinetics and proceedings in clinical application of nucleic acid therapeutics. Mol. Ther.29, 521–539 (2021).
  • Ganesan A , ArimondoPB , RotsMG , JeronimoC , BerdascoM. The timeline of epigenetic drug discovery: from reality to dreams. Clin. Epigenetics11, 174 (2019).
  • Cui W , AouidateA , WangS , YuQ , LiY , YuanS. Discovering anti-cancer drugs via computational methods. Front. Pharmacol.11, 733 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.