478
Views
0
CrossRef citations to date
0
Altmetric
Review

Covid-19 And Cancer: Insights Into Their Association And Influence On Genetic And Epigenetic Landscape

ORCID Icon, , , , , & show all
Pages 227-248 | Received 14 Feb 2023, Accepted 05 Apr 2023, Published online: 01 May 2023

References

  • Li Q , GuanX , WuPet al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med.382(13), 1199–1207 (2020).
  • Huang C , WangY , LiXet al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet395(10223), 497–506 (2020).
  • Wu F , WangA , LiuMet al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. MedRxiv doi:10.1101/2020.03.30.20047365 (2020) ( Preprint).
  • Zhou F , YuT , DuRet al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet395(10229), 1054–1062 (2020).
  • Li F . Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol.3(1), 237 (2016).
  • Perlman S , NetlandJ. Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol.7(6), 439–450 (2009).
  • Du L , HeY , ZhouY et al. The spike protein of SARS-CoV – a target for vaccine and therapeutic development. Nat. Rev. Microbiol.7(3), 226–236 (2009).
  • Schäfer A , BaricRS. Epigenetic landscape during coronavirus infection. Pathogens6(1), 8 (2017).
  • Mandal A , SinghP , SamaddarAet al. Vaccination of cancer patients against COVID-19: towards the end of a dilemma. Med. Oncol.38(8), 92 (2021).
  • Liao JB . Viruses and human cancer. Yale J. Biol. Med.79(3–4), 115–122 (2006).
  • PDQ Screening and Prevention Editorial Board . Cancer Prevention Overview (PDQ®): Health Professional Version. PDQ Cancer Information SummariesNational Cancer Institute, MD USA (2022). www.ncbi.nlm.nih.gov/books/NBK66016/
  • Jazieh A-R , AlenaziTH , AlhejaziA , AlSafi F , AlOlayan A. Outcome of oncology patients infected with coronavirus. JCO Glob. Oncol.6, 471–475 (2020).
  • Ofori-Asenso R , OgundipeO , AgyemanAAet al. Cancer is associated with severe disease in COVID-19 patients: a systematic review and meta-analysis. Ecancermedicalscience14, 1047 (2020).
  • Zhang L , ZhuF , XieLet al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann. Oncol.31(7), 894–901 (2020).
  • V’kovski P , KratzelA , SteinerS , StalderH , ThielV. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol.19(3), 155–170 (2021).
  • Yang M . Cell pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection (2020). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3527420
  • Bora VR , PatelBM. The deadly duo of COVID-19 and cancer. Front. Mol. Biosci.8, 643004 (2021).
  • Kumar S , ChatterjeeM , GhoshP et al. Targeting PD-1/PD-L1 in cancer immunotherapy: an effective strategy for treatment of triple-negative breast cancer (TNBC) patients. Genes Dis. doi:10.1016/j.gendis.2022.07.024 (2022) ( In press).
  • Ritchie AI , SinganayagamA. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword?Lancet395(10230), 1111 (2020).
  • Kumar S , BasuM , GhoshP , PalU , GhoshMK. COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery. Genes & Disease(2023).
  • Wang J , HajizadehNet al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a case series. J. Thromb. Haemost.18(7), 1752–1755 (2020).
  • Magro C , MulveyJJ , BerlinDet al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl. Res.220, 1–13 (2020).
  • Kumar S , BasuM , GhoshMK. Chaperone-assisted E3 ligase CHIP: a double agent in cancer. Genes Dis.9(6), 1521–1555 (2021).
  • Melenotte C , SilvinA , GoubetA-Get al. Immune responses during COVID-19 infection. Oncoimmunology9(1), 1807836 (2020).
  • Shi Y , WangY , ShaoCet al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ.27(5), 1451–1454 (2020).
  • Guihot A , LitvinovaE , AutranB , DebréP , VieillardV. Cell-mediated immune responses to COVID-19 infection. Front. Immunol.11, 1662 (2020).
  • Paces J , StrizovaZ , DanielS , CernyJ. COVID-19 and the immune system. Physiol. Res.69(3), 379 (2020).
  • Zhu Z , LianX , SuX et al. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res.21(1), 224 (2020).
  • Kritas SK , RonconiG , CaraffaAL et al. Mast cells contribute to coronavirus-induced inflammation: new anti-inflammatory strategy. J. Biol. Regul. Homeost. Agents34(1), 9–14 (2020).
  • Li G , FanY , LaiYet al. Coronavirus infections and immune responses. J. Med. Virol.92(4), 424–432 (2020).
  • Galli U , TravelliC , MassarottiAet al. Medicinal chemistry of nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. J. Med. Chem.56(16), 6279–6296 (2013).
  • Liu C , WangK , ZhangMet al. High expression of ACE2 and TMPRSS2 and clinical characteristics of COVID-19 in colorectal cancer patients. NPJ Precis. Oncol.5(1), 1–7 (2021).
  • Turnquist C , RyanBM , HorikawaI , HarrisBT , HarrisCC. Cytokine storms in cancer and COVID-19. Cancer Cell38(5), 598–601 (2020).
  • Choy EH , DeBenedetti F , TakeuchiT et al. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol.16(6), 335–345 (2020).
  • Li L , DongL , ZhaoD , GaoF , YanJ. Classical dendritic cells regulate acute lung inflammation and injury in mice with lipopolysaccharide-induced acute respiratory distress syndrome. Int. J. Mol. Med.44(2), 617–629 (2019).
  • Chang Y-J , LiuCY-Y , ChiangB-L , ChaoY-C , ChenC-C. Induction of IL-8 release in lung cells via activator protein-1 by recombinant baculovirus displaying severe acute respiratory syndrome-coronavirus spike proteins: identification of two functional regions. J. Immunol.173(12), 7602–7614 (2004).
  • Yuan S , LiuZ , XuZ , LiuJ , ZhangJ. High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies. J. Hematol. Oncol.13(1), 91 (2020).
  • Straus DS . Design of small molecules targeting transcriptional activation by NF-κB: overview of recent advances. Expert Opin. Drug Discov.4(8), 823–836 (2009).
  • Kawai T , AkiraS. Innate immune recognition of viral infection. Nat. Immunol.7(2), 131–137 (2006).
  • Poppe M , WittigS , JuridaLet al. The NF-κB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLoS Pathog.13(3), e1006286 (2017).
  • Wu Y , MaL , CaiSet al. RNA-induced liquid phase separation of SARS-CoV-2 nucleocapsid protein facilitates NF-κB hyper-activation and inflammation. Signal Transduct. Target. Ther.6(1), 167 (2021).
  • Li T , KenneyAD , LiuHet al. SARS-CoV-2 Nsp14 activates NF-κB signaling and induces IL-8 upregulation. BioRxiv doi:10.1101/2021.05.26.445787 (2021) ( Preprint).
  • Menachery VD , SchäferA , Burnum-JohnsonKEet al. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape. Proc. Natl Acad. Sci.115(5), E1012–E1021 (2018).
  • Jit BP , QaziS , AryaR , SrivastavaA , GuptaN , SharmaA. An immune epigenetic insight to COVID-19 infection. Epigenomics13(06), 465–480 (2021).
  • Eastman AJ . Immunomodulatory mechanisms in pathogenesis of Cryptococcus neoformans infection. Front. Med. (Lausanne)6, 129 (2016).
  • Basavarajappa BS , SubbannaS. Histone methylation regulation in neurodegenerative disorders. Int. J. Mol. Sci.22(9), 4654 (2021).
  • Morris R , KershawNJ , BabonJJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci.27(12), 1984–2009 (2018).
  • Croker BA , KiuH , NicholsonSE. SOCS regulation of the JAK/STAT signalling pathway. Semin. Cell Dev. Biol.19(4), 414–422 (2008).
  • Liu S , LiuL , XuGet al. Epigenetic modification is regulated by the interaction of influenza A virus nonstructural protein 1 with the de novo DNA methyltransferase DNMT3B and subsequent transport to the cytoplasm for K48-linked polyubiquitination. J. Virol.93(7), e01587–18 (2019).
  • Roundtree IA , EvansME , PanT , HeC. Dynamic RNA modifications in gene expression regulation. Cell169(7), 1187–1200 (2017).
  • Fernandes JC , AcuñaSM , AokiJI , Floeter-WinterLM , MuxelSM. Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA5(1), 17 (2019).
  • Ramanathan A , RobbGB , ChanS-H. mRNA capping: biological functions and applications. Nucleic Acids Res.44(16), 7511–7526 (2016).
  • Diamond MS . IFIT1: a dual sensor and effector molecule that detects non-2′-O methylated viral RNA and inhibits its translation. Cytokine Growth Factor Rev.25(5), 543–550 (2014).
  • Coldbeck-Shackley RC , EyreNS , BeardMR. The molecular interactions of ZIKV and DENV with the type-I IFN response. Vaccines8(3), 530 (2020).
  • Obermann WM . A motif in HSP90 and P23 that links molecular chaperones to efficient estrogen receptor α methylation by the lysine methyltransferase SMYD2. J. Biol. Chem.293(42), 16479–16487 (2018).
  • Khurana N , BhattacharyyaS. Hsp90, the concertmaster: tuning transcription. Front. Oncol.5, 100 (2015).
  • Hoffmann M , Kleine-WeberH , SchroederSet al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell181(2), 271–280 (2020).
  • Yao Y , YeF , LiKet al. Genome and epigenome editing identify CCR9 and SLC6A20 as target genes at the 3p21.31 locus associated with severe COVID-19. Signal Transduct. Target. Ther.6(1), 85 (2021).
  • Hegde M , GuruprasadKP , RamachandraL , SatyamoorthyK , JoshiMB. Interleukin-6–mediated epigenetic control of the VEGFR2 gene induces disorganized angiogenesis in human breast tumors. J. Biol. Chem.295(34), 12086–12098 (2020).
  • So JY , SkrypekN , YangHHet al. Induction of DNMT3B by PGE2 and IL6 at distant metastatic sites promotes epigenetic modification and breast cancer colonization. Cancer Res.80(12), 2612–2627 (2020).
  • Li H , XieL , ChenLet al. Genomic, epigenomic, and immune subtype analysis of CTSL/B and SARS-CoV-2 receptor ACE2 in pan-cancer. Aging12(22), 22370 (2020).
  • Tang Z , LiC , KangB et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res.45(W1), W98–W102 (2017).
  • Cerami E , GaoJ , DogrusozUet al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov.2(5), 401–404 (2012).
  • Katopodis P , AnikinV , RandevaHSet al. Pan-cancer analysis of transmembrane protease serine 2 and cathepsin L that mediate cellular SARS-CoV-2 infection leading to COVID-19. Int. J. Oncol.57(2), 533–539 (2020).
  • Farooqi AA , HouM-F , ChenC-C , WangC-L , ChangH-W. Androgen receptor and gene network: micromechanics reassemble the signaling machinery of TMPRSS2–ERG positive prostate cancer cells. Cancer Cell Int.14(1), 34 (2014).
  • Afshari A , JanfeshanS , YaghobiR , RoozbehJ , AzarpiraN. Covid-19 pathogenesis in prostatic cancer and TMPRSS2–ERG regulatory genetic pathway. Infect. Genet. Evol.88, 104669 (2021).
  • Jemal A , TiwariRC , MurrayTet al. Cancer statistics, 2004. CA Cancer J. Clin.54(1), 8–29 (2004).
  • Dehm SM , TindallDJ. Molecular regulation of androgen action in prostate cancer. J. Cell. Biochem.99(2), 333–344 (2006).
  • Heinlein CA , ChangC. Androgen receptor in prostate cancer. Endocr. Rev.25(2), 276–308 (2004).
  • Labrie F , Luu-TheV , LabrieC , SimardJ. DHEA and its transformation into androgens and estrogens in peripheral target tissues: intracrinology. Front. Neuroendocrinol.22(3), 185–212 (2001).
  • Stopsack KH , MucciLA , AntonarakisES , NelsonPS , KantoffPW. TMPRSS2 and COVID-19: serendipity or opportunity for intervention?Cancer Discov.10(6), 779–782 (2020).
  • Li M-Y , LiL , ZhangY , WangX-S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty9(02), 23–29 (2020).
  • Montopoli M , ZumerleS , VettorRet al. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N = 4532). Ann. Oncol.31(8), 1040–1045 (2020).
  • Lucas JM , HeinleinC , KimTet al. The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov.4(11), 1310–1325 (2014).
  • Bahmad HF , Abou-KheirW. Crosstalk between COVID-19 and prostate cancer. Prostate Cancer Prostatic Dis.23(4), 561–563 (2020).
  • Hoang T , NguyenTQ , TranTTA. Genetic susceptibility of ACE2 and TMPRSS2 in six common cancers and possible impacts on COVID-19. Cancer Res. Treat.53(3), 650–656 (2021).
  • Ilikci Sagkan R , Akin-BaliDF. Structural variations and expression profiles of the SARS-CoV-2 host invasion genes in lung cancer. J. Med. Virol.92(11), 2637–2647 (2020).
  • Crackower MA , SaraoR , OuditGYet al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature417(6891), 822–828 (2002).
  • Imai Y , KubaK , RaoSet al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature436(7047), 112–116 (2005).
  • Kuba K , ImaiY , RaoSet al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med.11(8), 875–879 (2005).
  • Dey A , VaishakK , DekaDet al. Epigenetic perspectives associated with COVID-19 infection and related cytokine storm: an updated review. Infection1–16 doi:10.1007/s15010-023-02017-8 (2023) ( Epub ahead of print).
  • Madjunkov M , DviriM , LibrachC. A comprehensive review of the impact of COVID-19 on human reproductive biology, assisted reproduction care and pregnancy: a Canadian perspective. J. Ovarian Res.13(1), 140 (2020).
  • Salgado-Albarrán M , Navarro-DelgadoEI , DelMoral-Morales Aet al. Comparative transcriptome analysis reveals key epigenetic targets in SARS-CoV-2 infection. NPJ Syst. Biol. Appl.7(1), 21 (2021).
  • Sen R , GarbatiM , BryantK , LuY. Epigenetic mechanisms influencing COVID-19. Genome64(4), 372–385 (2021).
  • Alves-Fernandes DK , JasiulionisMG. The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. Int. J. Mol. Sci.20(13), 3153 (2019).
  • Nemeth Z , KissE , TakacsI. The role of epigenetic regulator SIRT1 in balancing the homeostasis and preventing the formation of specific ‘soil’ of metabolic disorders and related cancers. Front. Biosci. (Landmark Ed.)27(9), 253 (2022).
  • Kaneko S , TakasawaK , AsadaKet al. Epigenetic mechanisms underlying COVID-19 pathogenesis. Biomedicines9(9), 1142 (2021).
  • van Dam PA , HuizingM , MestachGet al. SARS-CoV-2 and cancer: are they really partners in crime? Cancer Treat. Rev. 89, 102068 (2020).
  • Ahmad S , ManzoorS , SiddiquiSet al. Epigenetic underpinnings of inflammation: connecting the dots between pulmonary diseases, lung cancer and COVID-19. Semin. Cancer Biol.83, 384–398 (2022).
  • Arif KT , ElliottEK , HauptLM , GriffithsLR. Regulatory mechanisms of epigenetic miRNA relationships in human cancer and potential as therapeutic targets. Cancers12(10), 2922 (2020).
  • Uzuner E , UluGT , GürlerSB , BaranY. The role of miRNA in cancer: pathogenesis, diagnosis, and treatment. Methods Mol. Biol.2257, 375–422 (2022).
  • Moxon ER , SiegristC-A. The next decade of vaccines: societal and scientific challenges. Lancet378(9788), 348–359 (2011).
  • Kumar S , BasuM , GhoshP , AnsariA , GhoshMK. COVID-19: clinical status of vaccine development to date. Br. J. Clin. Pharmacol.89(1), 114–149 (2022).
  • COVID-19 Host Genetics Initiative . Mapping the human genetic architecture of COVID-19. Nature600(7889), 472–477 (2021).
  • Shigemizu D , FujimotoA , AkiyamaSet al. A practical method to detect SNVs and indels from whole genome and exome sequencing data. Sci. Rep.3(1), 2161 (2013).
  • Sahajpal NS , LaiC-YJ , HastieAet al. Host genome analysis of structural variations by optical genome mapping provides clinically valuable insights into genes implicated in critical immune, viral infection, and viral replication pathways in patients with severe COVID-19. medRxiv sdoi:10.1101/2021.01.05.21249190 (2021) ( Preprint).
  • Cao Y , LiL , XuMet al. The ChinaMAP analytics of deep whole genome sequences in 10,588 individuals. Cell Res.30(9), 717–731 (2020).
  • John G , SahajpalNS , MondalAKet al. Next-generation sequencing (NGS) in COVID-19: a tool for SARS-CoV-2 diagnosis, monitoring new strains and phylodynamic modeling in molecular epidemiology. Curr. Issues Mol. Biol.43(2), 845–867 (2021).
  • Sahajpal NS , BarseghyanH , KolheR , HastieA , ChaubeyA. Optical genome mapping as a next-generation cytogenomic tool for detection of structural and copy number variations for prenatal genomic analyses. Genes12(3), 398 (2021).
  • Sahajpal NS , LaiC-YJ , HastieAet al. Optical genome mapping identifies rare structural variations as predisposition factors associated with severe COVID-19. Iscience25(2), 103760 (2022).
  • Velavan TP , PallerlaSR , RüterJet al. Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine72, 103629 (2021).
  • Kiss H , KedraD , KissCet al. The LZTFL1 gene is a part of a transcriptional map covering 250 kb within the common eliminated region 1 (C3CER1) in 3p21.3. Genomics73(1), 10–19 (2001).
  • Lee J-W , LeeI-H , SatoT , KongSW , IimuraT. Genetic variation analyses indicate conserved SARS-CoV-2–host interaction and varied genetic adaptation in immune response factors in modern human evolution. Dev. Growth Differ.63(3), 219–227 (2021).
  • Liston A , Humblet-BaronS , DuffyD , GorisA. Human immune diversity: from evolution to modernity. Nat. Immunol.22(12), 1479–1489 (2021).
  • Zguro K , FalleriniC , FavaF , FuriniS , RenieriA. Host genetic basis of COVID-19: from methodologies to genes. Eur. J. Hum. Genet.30(8), 899–907 (2022).
  • Dao TL , HoangVT , GautretP. Recurrence of SARS-CoV-2 viral RNA in recovered COVID-19 patients: a narrative review. Eur. J. Clin. Microbiol. Infect. Dis.40(1), 13–25 (2021).
  • World Health Organization . Genomic sequencing of SARS-CoV-2: a guide to implementation for maximum impact on public health, 8 January 2021.WHO (2021).
  • Salyakina D , TsinoremasNF. Viral expression associated with gastrointestinal adenocarcinomas in TCGA high-throughput sequencing data. Hum. Genomics7(1), 23 (2013).
  • Briggs E , WardW , ReySet al. Assessment of potential SARS-CoV-2 virus integration into human genome reveals no significant impact on RT-qPCR COVID-19 testing. Proc. Natl Acad. Sci. USA118(44), e2113065118 (2021).
  • Desai S , RashmiS , RaneA et al. An integrated approach to determine the abundance, mutation rate and phylogeny of the SARS-CoV-2 genome. Brief. Bioinform.22(2), 1065–1075 (2021).
  • Hou Y , ZhaoJ , MartinWet al. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med.18(1), 216 (2020).
  • Singh H , ChoudhariR , NemaV , KhanAA. ACE2 and TMPRSS2 polymorphisms in various diseases with special reference to its impact on COVID-19 disease. Microb. Pathog.150, 104621 (2021).
  • Saengsiwaritt W , JittikoonJ , ChaikledkaewU , UdomsinprasertW. Genetic polymorphisms of ACE1, ACE2, and TMPRSS2 associated with COVID-19 severity: a systematic review with meta-analysis. Rev. Med. Virol.32(4), e2323 (2022).
  • Chaudhary M . COVID-19 susceptibility: potential of ACE2 polymorphisms. Egypt. J. Med. Hum. Genet.21(1), 1–8 (2020).
  • Sarkar S , KarmakarS , BasuM , GhoshP , GhoshMK. Neurological damages in COVID-19 patients: mechanisms and preventive interventions. MedComm.4(e247), 1–25 (2023).
  • Gheblawi M , WangK , ViveirosAet al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin–angiotensin system. Circ. Res.126(10), 1456–1474 (2020).
  • Beacon TH , SuR-C , LakowskiTM , DelcuveGP , DavieJR. SARS-CoV-2 multifaceted interaction with the human host. Part II: innate immunity response, immunopathology, and epigenetics. IUBMB Life72(11), 2331–2354 (2020).
  • Lara-Ureña N , García-DomínguezM. Relevance of BET family proteins in SARS-CoV-2 infection. Biomolecules11(8), 1126 (2021).
  • Wang R , LeeJ-H , XiongFet al. SARS-CoV-2 restructures the host chromatin architecture. bioRxiv doi:10.1101/2021.07.20.453146 (2021) ( Preprint).
  • Mishra PM , VermaNC , RaoC , UverskyVN , NandiCK. Intrinsically disordered proteins of viruses: involvement in the mechanism of cell regulation and pathogenesis. Progr. Mol. Biol. Transl. Sci.174, 1–78 ( 2020).
  • El Baba R , HerbeinG. Management of epigenomic networks entailed in coronavirus infections and COVID-19. Clin. Epigenetics12(1), 118 (2020).
  • Fensterl V , SenGC. Interferon-induced IFIT proteins: their role in viral pathogenesis. J. Virol.89(5), 2462–2468 (2014).
  • Mears HV , SweeneyTR. Mouse Ifit1b is a cap1-RNA-binding protein that inhibits mouse coronavirus translation and is regulated by complexing with Ifit1c. J. Biol. Chem.295(51), 17781–17801 (2020).
  • Yang E , LiMMH. All about the RNA: interferon-stimulated genes that interfere with viral RNA processes. Front. Immunol.11, 605024 (2020).
  • Hecht SS . Cigarette smoking and lung cancer: chemical mechanisms and approaches to prevention. Lancet Oncol.3(8), 461–469 (2002).
  • Yeh HH , LaiWW , ChenHHW , LiuHS , SuW-C. Autocrine IL-6-induced Stat3 activation contributes to the pathogenesis of lung adenocarcinoma and malignant pleural effusion. Oncogene25(31), 4300–4309 (2006).
  • Del Valle DM , Kim-SchulzeS , HuangH-Het al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med.26(10), 1636–1643 (2020).
  • Martínez-Cardús A , MoranS , MusulenEet al. Epigenetic homogeneity within colorectal tumors predicts shorter relapse-free and overall survival times for patients with locoregional cancer. Gastroenterology151(5), 961–972 (2016).
  • Takeshima H , UshijimaT. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ Precis. Oncol.3(1), 7 (2019).
  • Yildirim Z , SahinOS , YazarS , BozokCetintas V. Genetic and epigenetic factors associated with increased severity of Covid-19. Cell Biol. Int.45(6), 1158–1174 (2021).
  • Sang ER , TianY , MillerLC , SangY. Epigenetic evolution of ACE2 and IL-6 genes: non-canonical interferon-stimulated genes correlate to COVID-19 susceptibility in vertebrates. Genes12(2), 154 (2021).
  • Sawalha AH , ZhaoM , CoitP , LuQ. Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. Clin. Immunol.215, 108410 (2020).
  • Xiong Y , WeiY , GuYet al. DiseaseMeth version 2.0: a major expansion and update of the human disease methylation database. Nucleic Acids Res.45(D1), D888–D895 (2017).
  • Ding W , ChenJet al. DNMIVD: DNA methylation interactive visualization database. Nucleic Acids Res.48(D1), D856–D862 (2020).
  • Chai P , YuJ , GeS , JiaR , FanX. Genetic alteration, RNA expression, and DNA methylation profiling of coronavirus disease 2019 (COVID-19) receptor ACE2 in malignancies: a pan-cancer analysis. J. Hematol. Oncol.13(1), 43 (2020).
  • Severe Covid-19 GWAS Group . Genomewide association study of severe Covid-19 with respiratory failure. N. Engl. J. Med.383(16), 1522–1534 (2020).
  • Rosenzweig JM , GlennJD , CalabresiPA , WhartenbyKA. KLF4 modulates expression of IL-6 in dendritic cells via both promoter activation and epigenetic modification. J. Biol. Chem.288(33), 23868–23874 (2013).
  • Li W , WangQ , QiXet al. Viral interleukin-6 encoded by an oncogenic virus promotes angiogenesis and cellular transformation by enhancing STAT3-mediated epigenetic silencing of caveolin 1. Oncogene39(23), 4603–4618 (2020).
  • Jou J , GabdankI , LuoYet al. The ENCODE portal as an epigenomics resource. Curr. Protoc. Bioinformatics68(1), e89 (2019).
  • Zannella C , RinaldiL , BocciaGet al. Regulation of m6a methylation as a new therapeutic option against COVID-19. Pharmaceuticals14(11), 1135 (2021).
  • Yao Yao , FeiYe , KailongLiet al. Genome and epigenome editing identify CCR9 and SLC6A20 as target genes at the 3p21.31 locus associated with severe COVID-19. Signal Transduct Target Ther.6, 85 (2021).
  • Lu Xia , YuLiu , ZhiweiZhang et al. Modulation of IL-6 Expression by KLF4-Mediated Transactivation and PCAF-Mediated Acetylation in Sublytic C5b-9-Induced Rat Glomerular Mesangial Cells. Front Immunol.12, 779667 (2021).
  • Pinto BG , OliveiraAE , SinghYet al. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. J. Infect. Dis.222(4), 556–563 (2020).
  • DasguptaMaupali , DermawanJosephineKam Tai , WillardBelinda , StarkGeorgeR. STAT3-driven transcription depends upon the dimethylation of K49 by EZH2. Proc Natl Acad Sci U S A112(13),3985–3990 (2015).
  • Sałkowska A , KarwaciakI , KaraśK , DastychJ , RatajewskiM. SARS-CoV-2 proteins induce IFNG in Th1 lymphocytes generated from CD4+ cells from healthy, unexposed Polish donors. Vaccines8(4), E673 (2020).
  • Islam ABMMK , KhanM. Lung transcriptome of a COVID-19 patient and systems biology predictions suggest impaired surfactant production which may be druggable by surfactant therapy. Sci. Rep.10(1), 19395 (2020).
  • Mortaz E , MasjediMR , BarnesPJ , AdcockIM. Epigenetics and chromatin remodeling play a role in lung disease. Tanaffos10(4), 7–16 (2011).
  • Barnes PJ . Role of HDAC2 in the pathophysiology of COPD. Annu. Rev. Physiol.71, 451–464 (2009).
  • Pruimboom L . Methylation pathways and SARS-CoV-2 lung infiltration and cell membrane–virus fusion are both subject to epigenetics. Front. Cell. Infect. Microbiol.10, 290 (2020).
  • Indini A , RijavecE , GhidiniMet al. Coronavirus infection and immune system: an insight of COVID-19 in cancer patients. Crit. Rev. Oncol. Hematol.153, 103059 (2020).
  • Curigliano G . Cancer patients and risk of mortality for COVID-19. Cancer Cell38(2), 161–163 (2020).
  • Berger SL , KouzaridesT , ShiekhattarR , ShilatifardA. An operational definition of epigenetics. Genes Dev.23(7), 781–783 (2009).
  • Jin Z , LiuY. DNA methylation in human diseases. Genes Dis.5(1), 1–8 (2018).
  • Jaenisch R , BirdA. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet.33(3), 245–254 (2003).
  • Wu H , ZhangY. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell156(1–2), 45–68 (2014).
  • Ivashkiv LB , DonlinLT. Regulation of type I interferon responses. Nat. Rev. Immunol.14(1), 36–49 (2014).
  • Schneider WM , ChevillotteMD , RiceCM. Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol.32, 513 (2014).
  • Menachery VD , EisfeldAJ , SchäferAet al. Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses. MBio5(3), e01174–14 (2014).
  • Fang TC , SchaeferU , MecklenbraukerIet al. Histone H3 lysine 9 di-methylation as an epigenetic signature of the interferon response. J. Exp. Med.209(4), 661–669 (2012).
  • Kaikkonen MU , LamMT , GlassCK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc. Res.90(3), 430–440 (2011).
  • Varshney B , AgnihotramS , TanY-J , BaricR , LalSK. SARS coronavirus 3b accessory protein modulates transcriptional activity of RUNX1b. PLoS ONE7(1), e29542 (2012).
  • Preglej T , HammingerP , LuuMet al. Histone deacetylases 1 and 2 restrain CD4+ cytotoxic T lymphocyte differentiation. JCI Insight5(4), 133393 (2020).
  • LeRoy G , RickardsB , FlintSJ. The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol. Cell30(1), 51–60 (2008).
  • Mann M , RobertsDS , ZhuYet al. Discovery of RSV-induced BRD4 protein interactions using native immunoprecipitation and parallel accumulation – serial fragmentation (PASEF) mass spectrometry. Viruses13(3), 454 (2021).
  • Gordon DE , JangGM , BouhaddouMet al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature583(7816), 459–468 (2020).
  • O’Meara MJ , GuoJZ , SwaneyDL , TumminoTA , HüttenhainR. A SARS-CoV-2–human protein–protein interaction map reveals drug targets and potential drug-repurposing. BioRxiv doi:10.1101/2020.03.22.002386 (2020) ( Preprint).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.