1,459
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Integrative CUT&Tag-RNA-Seq Analysis of Histone Variant MacroH2A1-Dependent Orchestration of Human Induced Pluripotent Stem Cell Reprogramming

, , ORCID Icon, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 863-877 | Received 24 Jul 2023, Accepted 29 Sep 2023, Published online: 17 Oct 2023

References

  • Kaya-Okur HS , WuSJ , CodomoCAet al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun.10, 1930 (2019).
  • Janssens DH , MeersMP , WuSJet al. Automated CUT&Tag profiling of chromatin heterogeneity in mixed-lineage leukemia. Nat. Genet.53, 1586–1596 (2021).
  • Bartosovic M , KabbeM , Castelo-BrancoG. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat. Biotechnol.39, 825–835 (2021).
  • Zhu C , ZhangY , LiYE , LuceroJ , BehrensMM , RenB. Joint profiling of histone modifications and transcriptome in single cells from mouse brain. Nat. Methods18, 283–292 (2021).
  • Takahashi K , YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006).
  • Lee AS , TangC , RaoMS , WeissmanIL , WuJC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat. Med.19, 998–1004 (2013).
  • Liang G , ZhangY. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell13, 149–159 (2013).
  • Giallongo S , RehakovaD , RaffaeleM , LoRe O , KoutnaI , VinciguerraM. Redox and epigenetics in human pluripotent stem cells differentiation. Antioxid. Redox Signal.34, 335–349 (2021).
  • Bereshchenko O , LoRe O , NikulenkovFet al. Deficiency and haploinsufficiency of histone macroH2A1.1 in mice recapitulate hematopoietic defects of human myelodysplastic syndrome. Clin. Epigenetics11, 121 (2019).
  • Borghesan M , FusilliC , RappaFet al. DNA hypomethylation and histone variant macroH2A1 synergistically attenuate chemotherapy-induced senescence to promote hepatocellular carcinoma progression. Cancer Res.76, 594–606 (2016).
  • Giallongo S , DiRosa M , CaltabianoRet al. Loss of macroH2A1 decreases mitochondrial metabolism and reduces the aggressiveness of uveal melanoma cells. Aging12, 9745–9760 (2020).
  • Giallongo S , LoRe O , LochmanováGet al. Phosphorylation within Intrinsic disordered region discriminates histone variant macroH2A1 splicing isoforms-macroH2A1.1 and macroH2A1.2. Biology10, doi: 10.3390/biology10070659 (2021).
  • Lo Re O , DouetJ , BuschbeckMet al. Histone variant macroH2A1 rewires carbohydrate and lipid metabolism of hepatocellular carcinoma cells towards cancer stem cells. Epigenetics13, 829–845 (2018).
  • Lo Re O , MazzaT , GiallongoSet al. Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4+CD25+FoxP3+ regulatory T cells activation. Theranostics10, 910–924 (2020).
  • Pazienza V , BorghesanM , MazzaTet al. SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation. Aging6, 35–47 (2014).
  • Pazienza V , PanebiancoC , RappaFet al. Histone macroH2A1.2 promotes metabolic health and leanness by inhibiting adipogenesis. Epigenetics Chromatin9, 45 (2016).
  • Podrini C , KoffasA , ChokshiSet al. MacroH2A1 isoforms are associated with epigenetic markers for activation of lipogenic genes in fat-induced steatosis. FASEB J.29, 1676–1687 (2015).
  • Rappa F , GrecoA , PodriniCet al. Immunopositivity for histone macroH2A1 isoforms marks steatosis-associated hepatocellular carcinoma. PLOS ONE8, e54458 (2013).
  • Chiodi V , DomeniciMR , BiaginiTet al. Systemic depletion of histone macroH2A1.1 boosts hippocampal synaptic plasticity and social behavior in mice. FASEB J.35, e21793 (2021).
  • Guberovic I , FarkasM , CorujoD , BuschbeckM. Evolution, structure and function of divergent macroH2A1 splice isoforms. Semin. Cell Dev. Biol.135, 43–49 (2023).
  • Lo Re O , VinciguerraM. Histone MacroH2A1: a chromatin point of intersection between fasting, senescence and cellular regeneration. Genes8, doi: 10.3390/genes8120367 (2017).
  • Giallongo S , ŘehákováD , BiaginiTet al. Histonevariant macroH2A1.1 enhances nonhomologous end joining-dependent DNA double-strand-break repair and reprogramming efficiency of human iPSCs. Stem Cells40, 35–48 (2022).
  • Andrews S et al. FastQC: a quality control tool for high throughput sequence data (2010).
  • Langmead B , SalzbergSL. Fast gapped-read alignment with Bowtie 2. Nat. Methods9, 357–359 (2012).
  • Tarasov A , VilellaAJ , CuppenE , NijmanIJ , PrinsP. Sambamba: fast processing of NGS alignment formats. Bioinformatics31, 2032–2034 (2015).
  • Zhang Y , LiuT , MeyerCAet al. Model-based analysis of ChIP-Seq (MACS). Genome Biol.9, R137 (2008).
  • Carroll TS , LiangZ , SalamaR , StarkR , de SantiagoI. Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data. Front. Genet.5, 75 (2014).
  • Li Q , BrownJB , HuangH , BickelPJ. Measuring reproducibility of high-throughput experiments. aoas5, 1752–1779 (2011).
  • Yu G , WangL-G , HeQ-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics31, 2382–2383 (2015).
  • Nordin A , ZambaniniG , PagellaP , CantùC. The CUT&RUN blacklist of problematic regions of the genome. bioRxiv doi: 10.1101/2022.11.11.516118 (2022).
  • Patro R , DuggalG , LoveMI , IrizarryRA , KingsfordC. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods14, 417–419 (2017).
  • Love MI , HuberW , AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014).
  • Wang S , SunH , MaJet al. Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat. Protoc.8, 2502–2515 (2013).
  • Wu T , HuE , XuSet al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb.)2, 100141 (2021).
  • Xie Z , BaileyA , Kuleshovet al. Gene set knowledge discovery with Enrichr. Curr. Protoc1, e90 (2021).
  • Supek F , BošnjakM , ŠkuncaN , ŠmucT. REVIGO summarizes and visualizes long lists of gene ontology terms. PLOS ONE6, e21800 (2011).
  • Krämer A , GreenJ , PollardJJr , TugendreichS. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics30, 523–530 (2014).
  • Gamble MJ , FrizzellKM , YangC , KrishnakumarR , KrausWL. The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes Dev.24, 21–32 (2010).
  • Gaspar-Maia A , QadeerZA , HassonDet al. MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat. Commun.4, 1565 (2013).
  • Changolkar LN , SinghG , CuiKet al. Genome-wide distribution of macroH2A1 histone variants in mouse liver chromatin. Mol. Cell. Biol.30, 5473–5483 (2010).
  • Hurtado-Bagès S , PosavecMarjanovic M , ValeroVet al. The histone variant MacroH2A1 regulates key genes for myogenic cell fusion in a splice-isoform dependent manner. Cells9, doi: 10.3390/cells9051109 (2020).
  • Recoules L , HeurteauA , RaynalFet al. The histone variant macroH2A1.1 regulates RNA polymerase II-paused genes within defined chromatin interaction landscapes. J. Cell Sci.135, doi: 10.1242/jcs.259456 (2022).
  • Bernstein E , Muratore-SchroederTL , DiazRLet al. A phosphorylated subpopulation of the histone variant macroH2A1 is excluded from the inactive X chromosome and enriched during mitosis. Proc. Natl Acad. Sci. USA105, 1533–1538 (2008).
  • Mermoud JE , CostanziC , PehrsonJR , BrockdorffN. Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of X-inactivation. J. Cell Biol.147, 1399–1408 (1999).
  • Chadwick BP , WillardHF. Histone H2A variants and the inactive X chromosome: identification of a second macroH2A variant. Hum. Mol. Genet.10, 1101–1113 (2001).
  • Kustatscher G , HothornM , PugieuxC , ScheffzekK , LadurnerAG. Splicing regulates NAD metabolite binding to histone macroH2A. Nat. Struct. Mol. Biol.12, 624–625 (2005).
  • Son MJ , SonM-Y , SeolBet al. Nicotinamide overcomes pluripotency deficits and reprogramming barriers. Stem Cells31, 1121–1135 (2013).
  • Meng Y , RenZ , XuFet al. Nicotinamide promotes cell survival and differentiation as kinase inhibitor in human pluripotent stem cells. Stem Cell Reports11, 1347–1356 (2018).
  • Teslaa T , TeitellMA. Pluripotent stem cell energy metabolism: an update. EMBO J.34, 138–153 (2015).
  • Posavec Marjanović M , Hurtado-BagèsS , LassiMet al. MacroH2A1.1 regulates mitochondrial respiration by limiting nuclear NAD consumption. Nat. Struct. Mol. Biol.24, 902–910 (2017).
  • Hu Y , ChopraV , ChopraRet al. Transcriptional modulator H2A histone family, member Y (H2AFY) marks Huntington disease activity in man and mouse. Proc. Natl Acad. Sci. USA108, 17141–17146 (2011).
  • Kapadia M , MianMF , MaDet al. Differential effects of chronic immunosuppression on behavioral, epigenetic, and Alzheimer’s disease-associated markers in 3xTg-AD mice. Alzheimers Res. Ther.13, 30 (2021).
  • Haremaki T , MetzgerJJ , RitoT , OzairMZ , EtocF , BrivanlouAH. Self-organizing neuruloids model developmental aspects of Huntington’s disease in the ectodermal compartment. Nat. Biotechnol.37, 1198–1208 (2019).
  • Ryskamp DA , KorbanS , ZhemkovV , KraskovskayaN , BezprozvannyI. Neuronal sigma-1 receptors: signaling functions and protective roles in neurodegenerative diseases. Front. Neurosci.13, 474181 (2019).
  • Vadodaria KC , JonesJR , LinkerS , GageFH. Modeling brain disorders using induced pluripotent stem cells. Cold Spring Harb. Perspect. Biol.12, doi: 10.1101/cshperspect.a035659 (2020).
  • Curran T , MorganJI. Fos: an immediate-early transcription factor in neurons. J. Neurobiol.26, 403–412 (1995).
  • Krendl C , ShaposhnikovD , RishkoVet al. GATA2/3-TFAP2A/C transcription factor network couples human pluripotent stem cell differentiation to trophectoderm with repression of pluripotency. Proc. Natl Acad. Sci. USA114, E9579–E9588 (2017).
  • Dowen JM , FanZP , HniszDet al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell159, 374–387 (2014).
  • Levine M . Paused RNA polymerase II as a developmental checkpoint. Cell145, 502–511 (2011).
  • Shu J , ZhangK , ZhangMet al. GATA family members as inducers for cellular reprogramming to pluripotency. Cell Res.25, 169–180 (2015).
  • Song Y , LiangZ , ZhangJet al. CTCF functions as an insulator for somatic genes and a chromatin remodeler for pluripotency genes during reprogramming. Cell Rep.39, 110626 (2022).
  • Schuster J , de GuidiC , FatimaA , SobolM , DahlN. Syndromic RNA polymerase II insufficiency: Generation of a human induced pluripotent stem cell line (UUIGPi002A-5) with a heterozygous disruption of POLR2A. Stem Cell Res.57, 102577 (2021).
  • Markov GJ , MaiT , NairSet al. AP-1 is a temporally regulated dual gatekeeper of reprogramming to pluripotency. Proc. Natl Acad. Sci. USA118, doi: 10.1073/pnas.2104841118 (2021).
  • Hu D , AbbasovaL , SchilderBM , NottA , SkeneNG , MarziSJ. CUT&Tag recovers up to half of ENCODE ChIP-seq peaks in modifications of H3K27. bioRxiv doi: 10.1101/2022.03.30.486382 (2023).
  • Volpato V , SmithJ , SandorCet al. Reproducibility of molecular phenotypes after long-term differentiation to human iPSC-derived neurons: a multi-site omics study. Stem Cell Reports11, 897–911 (2018).
  • Volpato V , WebberC. Addressing variability in iPSC-derived models of human disease: guidelines to promote reproducibility. Dis. Model. Mech.13, doi: 10.1242/dmm.042317 (2020).
  • Carcamo-Orive I , HoffmanGE , CundiffPet al. Analysis of transcriptional variability in a large human iPSC library reveals genetic and non-genetic determinants of heterogeneity. Cell Stem Cell20, 518–532.e9 (2017).
  • Silva M , DaheronL , HurleyHet al. Generating iPSCs: translating cell reprogramming science into scalable and robust biomanufacturing strategies. Cell Stem Cell16, 13–17 (2015).