605
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Role of Transcription in Imprint Establishment in the Male and Female Germ Lines

ORCID Icon & ORCID Icon
Pages 127-136 | Received 02 Oct 2023, Accepted 27 Nov 2023, Published online: 21 Dec 2023

References

  • Liao J , Song S , Gusscott S et al. Establishment of paternal methylation imprint at the H19/Igf2 imprinting control region. Sci. Adv. 9(36), eadi2050 (2023).
  • Barlow DP , Bartolomei MS . Genomic imprinting in mammals. Cold Spring Harb. Perspect. Biol. 6(2), a018382 (2014).
  • Bartolomei MS , Ferguson-Smith AC . Mammalian genomic imprinting. Cold Spring Harb. Perspect. Biol. 3(7), a002592 (2011).
  • Li X , Ito M , Zhou F et al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell 15(4), 547–557 (2008).
  • Quenneville S , Verde G , Corsinotti A et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell 44(3), 361–372 (2011).
  • Takahashi N , Coluccio A , Thorball CW et al. ZNF445 is a primary regulator of genomic imprinting. Genes Dev. 33(1–2), 49–54 (2019).
  • Takahashi N , Gray D , Strogantsev R et al. ZFP57 and the targeted maintenance of postfertilization genomic imprints. Cold Spring Harb. Symp. Quant. Biol. 80, 177–187 (2015).
  • Szabó PE , Hubner K , Scholer H , Mann JR . Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech. Dev. 115(1–2), 157–160 (2002).
  • Hajkova P , Erhardt S , Lane N et al. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117(1–2), 15–23 (2002).
  • Szabó PE , Mann JR . Biallelic expression of imprinted genes in the mouse germ line: implications for erasure, establishment, and mechanisms of genomic imprinting. Genes Dev. 9(15), 1857–1868 (1995).
  • Kato Y , Kaneda M , Hata K et al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum. Mol. Genet. 16(19), 2272–2280 (2007).
  • Lee DH , Singh P , Tsai SY et al. CTCF-dependent chromatin bias constitutes transient epigenetic memory of the mother at the H19-Igf2 imprinting control region in prospermatogonia. PLOS Genet. 6(11), e1001224 (2010).
  • Davis TL , Yang GJ , McCarrey JR , Bartolomei MS . The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum. Mol. Genet. 9(19), 2885–2894 (2000).
  • Lucifero D , Mann MR , Bartolomei MS , Trasler JM . Gene-specific timing and epigenetic memory in oocyte imprinting. Hum. Mol. Genet. 13(8), 839–849 (2004).
  • Hiura H , Obata Y , Komiyama J , Shirai M , Kono T . Oocyte growth-dependent progression of maternal imprinting in mice. Genes Cells 11(4), 353–361 (2006).
  • Gahurova L , Tomizawa SI , Smallwood SA et al. Transcription and chromatin determinants of de novo DNA methylation timing in oocytes. Epigenetics Chromatin 10, 25 (2017).
  • Bourc’his D , Xu GL , Lin CS , Bollman B , Bestor TH . Dnmt3L and the establishment of maternal genomic imprints. Science 294(5551), 2536–2539 (2001).
  • Hata K , Okano M , Lei H , Li E . Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129(8), 1983–1993 (2002).
  • Kaneda M , Hirasawa R , Chiba H , Okano M , Li E , Sasaki H . Genetic evidence for Dnmt3a-dependent imprinting during oocyte growth obtained by conditional knockout with Zp3-Cre and complete exclusion of Dnmt3b by chimera formation. Genes Cells 15(3), 169–179 (2010).
  • Kaneda M , Okano M , Hata K et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429(6994), 900–903 (2004).
  • Kobayashi H , Sakurai T , Imai M et al. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLOS Genet. 8(1), e1002440 (2012).
  • Shirane K , Toh H , Kobayashi H et al. Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLOS Genet. 9(4), e1003439 (2013).
  • Singh P , Li AX , Tran DA et al. De novo DNA methylation in the male germ line occurs by default but is excluded at sites of H3K4 methylation. Cell Rep. 4(1), 205–219 (2013).
  • Henckel A , Chebli K , Kota SK , Arnaud P , Feil R . Transcription and histone methylation changes correlate with imprint acquisition in male germ cells. EMBO J. 31(3), 606–615 (2012).
  • Stewart KR , Veselovska L , Kim J et al. Dynamic changes in histone modifications precede de novo DNA methylation in oocytes. Genes Dev. 29(23), 2449–2462 (2015).
  • Ciccone DN , Su H , Hevi S et al. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461(7262), 415–418 (2009).
  • Ooi SK , Qiu C , Bernstein E et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448(7154), 714–717 (2007).
  • Ma P , de Waal E , Weaver JR , Bartolomei MS , Schultz RM . A DNMT3A2-HDAC2 complex is essential for genomic imprinting and genome integrity in mouse oocytes. Cell Rep. 13(8), 1552–1560 (2015).
  • Xu Q , Xiang Y , Wang Q et al. SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development. Nat. Genet. 51(5), 844–856 (2019).
  • Baubec T , Colombo DF , Wirbelauer C et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520(7546), 243–247 (2015).
  • Neri F , Rapelli S , Krepelova A et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543(7643), 72–77 (2017).
  • Shirane K , Miura F , Ito T , Lorincz MC . NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts polycomb-associated silencing. Nat. Genet. 52(10), 1088–1098 (2020).
  • Watanabe T , Tomizawa S , Mitsuya K et al. Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332(6031), 848–852 (2011).
  • Barau J , Teissandier A , Zamudio N et al. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354(6314), 909–912 (2016).
  • Chotalia M , Smallwood SA , Ruf N et al. Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev. 23(1), 105–117 (2009).
  • Veselovska L , Smallwood SA , Saadeh H et al. Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape. Genome Biol. 16, 209 (2015).
  • Bogutz AB , Brind’Amour J , Kobayashi H et al. Evolution of imprinting via lineage-specific insertion of retroviral promoters. Nat. Commun. 10(1), 5674 (2019).
  • Joh K , Matsuhisa F , Kitajima S et al. Growing oocyte-specific transcription-dependent de novo DNA methylation at the imprinted Zrsr1-DMR. Epigenetics Chromatin 11(1), 28 (2018).
  • Singh VB , Sribenja S , Wilson KE et al. Blocked transcription through KvDMR1 results in absence of methylation and gene silencing resembling Beckwith–Wiedemann syndrome. Development 144(10), 1820–1830 (2017).
  • Smith EY , Futtner CR , Chamberlain SJ , Johnstone KA , Resnick JL . Transcription is required to establish maternal imprinting at the Prader–Willi syndrome and Angelman syndrome locus. PLOS Genet. 7(12), e1002422 (2011).
  • Hiura H , Komiyama J , Shirai M , Obata Y , Ogawa H , Kono T . DNA methylation imprints on the IG-DMR of the Dlk1-Gtl2 domain in mouse male germline. FEBS Lett. 581(7), 1255–1260 (2007).
  • Singh P , Lee DH , Szabó PE . More than insulator: multiple roles of CTCF at the H19-Igf2 imprinted domain. Front. Genet. 3, 214 (2012).
  • Kamimura S , Hatanaka Y , Hirasawa R et al. Establishment of paternal genomic imprinting in mouse prospermatogonia analyzed by nuclear transfer. Biol. Reprod. 91(5), 120 (2014).
  • Sato S , Yoshida W , Soejima H , Nakabayashi K , Hata K . Methylation dynamics of IG-DMR and Gtl2-DMR during murine embryonic and placental development. Genomics 98(2), 120–127 (2011).
  • Lin SP , Youngson N , Takada S et al. Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat. Genet. 35(1), 97–102 (2003).
  • Saito T , Hara S , Kato T et al. A tandem repeat array in IG-DMR is essential for imprinting of paternal allele at the Dlk1-Dio3 domain during embryonic development. Hum. Mol. Genet. 27(18), 3283–3292 (2018).
  • Aronson BE , Scourzic L , Shah V et al. A bipartite element with allele-specific functions safeguards DNA methylation imprints at the Dlk1-Dio3 locus. Dev. Cell 56(22), 3052–3065.e3055 (2021).
  • Kojima S , Shiochi N , Sato K et al. Epigenome editing reveals core DNA methylation for imprinting control in the Dlk1-Dio3 imprinted domain. Nucleic Acids Res. 50(9), 5080–5094 (2022).
  • Yoon BJ , Herman H , Sikora A , Smith LT , Plass C , Soloway PD . Regulation of DNA methylation of Rasgrf1. Nat. Genet. 30(1), 92–96 (2002).
  • Yoon B , Herman H , Hu B et al. Rasgrf1 imprinting is regulated by a CTCF-dependent methylation-sensitive enhancer blocker. Mol. Cell. Biol. 25(24), 11184–11190 (2005).
  • Holmes R , Chang Y , Soloway PD . Timing and sequence requirements defined for embryonic maintenance of imprinted DNA methylation at Rasgrf1. Mol. Cell. Biol. 26(24), 9564–9570 (2006).
  • Watanabe T , Cui X , Yuan Z , Qi H , Lin H . MIWI2 targets RNAs transcribed from piRNA-dependent regions to drive DNA methylation in mouse prospermatogonia. EMBO J. 37(18), e95329 (2018).