510
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Toward a more holistic approach to the study of exposures and child outcomes

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 635-651 | Received 30 Nov 2023, Accepted 27 Feb 2024, Published online: 14 Mar 2024

References

  • Gillman MW, Blaisdell CJ. Environmental Influences on Child Health Outcomes, a Research Program of the National Institutes of Health. Curr. Opin. Pediatr. 30(2), 260–262 (2018).
  • Rappaport SM. Implications of the exposome for exposure science. J. Expo. Sci. Environ. Epidemiol. 21(1), 5–9 (2011).
  • Rappaport SM. Genetic factors are not the major causes of chronic diseases. PLOS ONE 11(4), e0154387 (2016).
  • Rappaport SM, Smith MT. Environment and disease risks. Science 330(6003), 460–461 (2010).
  • Willett WC. Balancing life-style and genomics research for disease prevention. Science 296(5568), 695–698 (2002).
  • Etzel RA, Balk SJ ( Eds). Pediatric Environmental Health (4th edition). American Academy of Pediatrics, Elk Grove Village, IL, USA (2019).
  • The American College of Obstetricians and Gynecologists. Reducing prenatal exposure to toxic environmental agents. (2013). www.acog.org/en/clinical/clinical-guidance/committee-opinion/articles/2021/07/reducing-prenatal-exposure-to-toxic-environmental-agents
  • Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomarkers Prev. 14(8), 1847–1850 (2005).
  • Vermeulen R, Schymanski EL, Barabási A-L, Miller GW. The exposome and health: where chemistry meets biology. Science 367(6476), 392–396 (2020).
  • Miller GW, Jones DP. The nature of nurture: refining the definition of the exposome. Toxicol. Sci. 137(1), 1–2 (2014).
  • David A, Chaker J, Price EJ et al. Towards a comprehensive characterisation of the human internal chemical exposome: challenges and perspectives. Environ. Int. 156, 106630 (2021).
  • Price EJ, Vitale CM, Miller GW et al. Merging the exposome into an integrated framework for “omics” sciences. iScience 25(3), 103976 (2022).
  • Zota AR, Shamasunder B. Environmental health equity: moving toward a solution-oriented research agenda. J. Expo. Sci. Environ. Epidemiol. 31(3), 399–400 (2021).
  • Dennis KK, Auerbach SS, Balshaw DM et al. The importance of the biological impact of exposure to the concept of the exposome. Environ. Health Perspect. 124(10), 1504–1510 (2016).
  • Miller GW. Integrating the exposome into a multi-omic research framework. Exposome 1(1), osab002 (2021).
  • Nobile S, Di Sipio Morgia C, Vento G. Perinatal origins of adult disease and opportunities for health promotion: a narrative review. J. Pers. Med. 12(2), 157 (2022).
  • Itoh H, Ueda M, Suzuki M, Kohmura-Kobayashi Y. Developmental origins of metaflammation; a bridge to the future between the DOHaD theory and evolutionary biology. Front. Endocrinol. 13, 839436 (2022).
  • Chung EH, Chou J, Brown KA. Neurodevelopmental outcomes of preterm infants: a recent literature review. Transl. Pediatr. 9(S1), S3–S8 (2020).
  • Camerota M, Graw S, Everson TM et al. Prenatal risk factors and neonatal DNA methylation in very preterm infants. Clin. Epigenetics 13(1), 171 (2021).
  • Constantino JN, Gruber C. Social Responsiveness Scale, Second Edition (SRS-2), 2nd Ed. Western Psychological Services, Torrance, CA, USA (2012).
  • Constantino JN, Davis SA, Todd RD et al. Validation of a brief quantitative measure of autistic traits: comparison of the Social Responsiveness Scale with the Autism Diagnostic Interview-Revised. J. Autism Dev. Disord. 33(4), 427–433 (2003).
  • Bruni TP. Test review: Social Responsiveness Scale–Second Edition (SRS-2). J. Psychoeduc. Assess. 32(4), 365–369 (2014).
  • Conners C. Conners Kiddie Continuous Performance Test 2nd Edition (K-CPT 2). Multi-Health Systems North Tonawanda, NY, USA (2006).
  • Mahone EM. Measurement of attention and related functions in the preschool child. Ment. Retard. Dev. Disabil. Res. Rev. 11(3), 216–225 (2005).
  • Putnam SP, Rothbart MK. Development of short and very short forms of the Children's Behavior Questionnaire. J. Pers. Assess. 87(1), 102–112 (2006).
  • Rothbart MK, Ahadi SA, Hershey KL, Fisher P. Investigations of temperament at three to seven years: the Children's Behavior Questionnaire. Child Dev. 72(5), 1394–1408 (2001).
  • Zelazo PD, Anderson JE, Richler J, Wallner-Allen K, Beaumont JL, Weintraub S. II. NIH Toolbox Cognition Battery (CB): measuring executive function and attention. Monogr. Soc. Res. Child Dev. 78(4), 16–33 (2013).
  • Gershon RC, Cook KF, Mungas D et al. Language measures of the NIH Toolbox Cognition Battery. J. Int. Neuropsychol. Soc. 20(6), 642–651 (2014).
  • Everson TM, O'Shea TM, Burt A et al. Serious neonatal morbidities are associated with differences in DNA methylation among very preterm infants. Clin. Epigenetics 12(1), 1–15 (2020).
  • Liu J, Siegmund KD. An evaluation of processing methods for HumanMethylation450 BeadChip data. BMC Genomics 17(1), 469 (2016).
  • Aryee MJ, Jaffe AE, Corrada-Bravo H et al. Minfi: a flexible and comprehensive bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30(10), 1363–1369 (2014).
  • Pidsley R, Zotenko E, Peters TJ et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 17(1), 208 (2016).
  • Pidsley R, Y Wong CC, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics 14(1), 293 (2013).
  • Teschendorff AE, Marabita F, Lechner M et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 29(2), 189–196 (2013).
  • Gatev E, Gladish N, Mostafavi S, Kobor MS. CoMeBack: DNA methylation array data analysis for co-methylated regions. Bioinformatics 36(9), 2675–2683 (2020).
  • Logue MW, Smith AK, Wolf EJ et al. The correlation of methylation levels measured using Illumina 450K and EPIC BeadChips in blood samples. Epigenomics 9(11), 1363–1371 (2017).
  • Carey VJ. gee: Generalized Estimating Equation Solver (2023). https://CRAN.R-project.org/package=gee
  • McEwen BS, Seeman T. Protective and damaging effects of mediators of stress: elaborating and testing the concepts of allostasis and allostatic load. Ann. NY Acad. Sci. 896(1), 30–47 (1999).
  • Ishwaran H, Kogalur UB. Fast unified Random Forest for Survival, Regression, and Classification (RF-SRC) (2023). www.randomforestsrc.org/
  • Wright MN, Ziegler A. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77(1), 1–17 (2017). http://arxiv.org/abs/1508.04409
  • Zheng SC, Webster AP, Dong D et al. A novel cell-type deconvolution algorithm reveals substantial contamination by immune cells in saliva, buccal and cervix. Epigenomics 10(7), 925–940 (2018).
  • Lester BM, LaGasse LL, Shankaran S et al. Prenatal cocaine exposure related to cortisol stress reactivity in 11-year-old children. J. Pediatr. 157(2), 288–295 (2010).
  • Dumitrescu L, Mahoney ER, Mukherjee S et al. Genetic variants and functional pathways associated with resilience to Alzheimer's disease. Brain J. Neurol. 143(8), 2561–2575 (2020).
  • Schrott R, Song A, Ladd-Acosta C. Epigenetics as a biomarker for early-life environmental exposure. Curr. Environ. Health Rep. 9(4), 604–624 (2022).
  • Walsh K, McCormack CA, Webster R et al. Maternal prenatal stress phenotypes associate with fetal neurodevelopment and birth outcomes. Proc. Natl Acad. Sci. 116(48), 23996–24005 (2019).