233
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetics of Kidney Cancer And Bladder Cancer

&
Pages 19-34 | Published online: 17 Feb 2011

Bibliography

  • Jemal A , SiegelR, XuJ, WardE: Cancer statistics, 2010.CA Cancer J. Clin.60 , 277–300 (2010).
  • Cohen HT , McGovernFJ: Renal-cell carcinoma.N. Engl. J. Med.353 , 2477–2490 (2005).
  • Zambrano NR , LubenskyIA, MerinoMJ, LinehanWM, WaltherMM: Histopathology and molecular genetics of renal tumors: toward unification of a classification system.J. Urol.162 , 1246–1258 (1999).
  • Herr H , LammDL, DenisL: Management of superficial bladder cancer. In: Principles & Practice of Genitourinary Oncology. Raghavan D, Scher HL, Leibel SA, Lange PH (Eds). Lippincott-Raven, PA, USA, 273–280 (1997).
  • Cairns P , SidranskyD: Bladder Cancer, 2nd Edition. New York McGraw-Hill, NY, USA (2002).
  • Dalgliesh GL , FurgeK, GreenmanCet al.: Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes.Nature463 , 360–363 (2010).
  • Thomas RK , BakerAC, DebiasiRMet al.: High-throughput oncogene mutation profiling in human cancer.Nat. Genet.39 , 347–351 (2007).
  • Beroukhim R , BrunetJP, Di Napoli A et al.: Patterns of gene expression and copy-number alterations in von-Hippel Lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res.69 , 4674–4681 (2009).
  • Hoque MO , LeeCC, CairnsP, SchoenbergM, SidranskyD: Genome-wide genetic characterization of bladder cancer: a comparison of high-density single-nucleotide polymorphism arrays and PCR-based microsatellite analysis.Cancer Res.63 , 2216–2222 (2003).
  • Jones PA , BaylinSB: The fundamental role of epigenetic events in cancer.Nat. Rev. Genet.3 , 415–428 (2002).
  • Dunn BK : Hypomethylation: one side of a larger picture.Ann. NY Acad. Sci.983 , 28–42 (2003).
  • Cui H , NiemitzEL, RavenelJDet al.: Loss of imprinting of insulin-like growth factor-II in Wilms‘ tumor commonly involves altered methylation but not mutations of CTCF or its binding site.Cancer Res.61 , 4947–4950 (2001).
  • Cui H , OnyangoP, BrandenburgS, WuY, HsiehCL, FeinbergAP: Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2.Cancer Res.62 , 6442–6446 (2002).
  • Byun HM , WongHL, BirnsteinEA, WolffEM, LiangG, YangAS: Examination of IGF2 and H19 loss of imprinting in bladder cancer.Cancer Res.67 , 10753–10758 (2007).
  • Herman JG , LatifF, WengYet al.: Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma.Proc. Natl Acad. Sci. USA91 , 9700–9704 (1994).
  • Dulaimi E , Ibanez de Caceres I, Uzzo RG et al.: Promoter hypermethylation profile of kidney cancer. Clin. Cancer Res.10 , 3972–3979 (2004).
  • Schmidt L , DuhFM, ChenFet al.: Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas.Nat. Genet.16 , 68–73 (1997).
  • Tomlinson IP , AlamNA, RowanAJet al.: Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer.Nat. Genet.30 , 406–410 (2002).
  • Nickerson ML , WarrenMB, ToroJRet al.: Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt–Hogg–Dube syndrome.Cancer Cell2 , 157–164 (2002).
  • da Silva NF , GentleD, HessonLB, MortonDG, LatifF, MaherER: Analysis of the Birt–Hogg–Dube (BHD) tumour suppressor gene in sporadic renal cell carcinoma and colorectal cancer.J. Med. Genet.40 , 820–824 (2003).
  • Gad S , LefevreSH, KhooSKet al.: Mutations in BHD and TP53 genes, but not in HNF1β gene, in a large series of sporadic chromophobe renal cell carcinoma.Br. J. Cancer96 , 336–340 (2007).
  • Ricketts C , WoodwardER, KillickPet al.: Germline SDHB mutations and familial renal cell carcinoma.J. Natl Cancer Inst.100 , 1260–1262 (2008).
  • Morris MR , HessonLB, WagnerKJet al.: Multigene methylation analysis of Wilms‘ tumour and adult renal cell carcinoma.Oncogene22 , 6794–6801 (2003).
  • Lynch HT , SmyrkTC, WatsonPet al.: Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review.Gastroenterology104 , 1535–1549 (1993).
  • Gylling AH , NieminenTT, Abdel-RahmanWMet al.: Differential cancer predisposition in Lynch syndrome: insights from molecular analysis of brain and urinary tract tumors.Carcinogenesis29 , 1351–1359 (2008).
  • Herman JG , UmarA, PolyakKet al.: Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma.Proc. Natl Acad. Sci. USA95 , 6870–6875 (1998).
  • Catto JW , AzzouziAR, RehmanIet al.: Promoter hypermethylation is associated with tumor location, stage, and subsequent progression in transitional cell carcinoma.J. Clin. Oncol.23 , 2903–2910 (2005).
  • Esteller M , LevineR, BaylinSB, EllensonLH, HermanJG: MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas.Oncogene17 , 2413–2417 (1998).
  • Esteller M , CatasusL, Matias-GuiuXet al.: hMLH1 promoter hypermethylation is an early event in human endometrial tumorigenesis.Am. J. Pathol.155 , 1767–1772 (1999).
  • Haibach H , BurnsTW, CarlsonHE, BurmanKD, DeftosLJ: Multiple hamartoma syndrome (Cowden‘s disease) associated with renal cell carcinoma and primary neuroendocrine carcinoma of the skin (Merkel cell carcinoma).Am. J. Clin. Pathol.97 , 705–712 (1992).
  • Pilarski R , EngC: Will the real Cowden syndrome please stand up (again)? Expanding mutational and clinical spectra of the PTEN hamartoma tumour syndrome.J. Med. Genet.41 , 323–326 (2004).
  • Liaw D , MarshDJ, LiJet al.: Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome.Nat. Genet.16 , 64–67 (1997).
  • Cairns P , EvronE, OkamiKet al.: Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder cancers.Oncogene16 , 3215–3218 (1998).
  • Zysman MA , ChapmanWB, BapatB: Considerations when analyzing the methylation status of PTEN tumor suppressor gene.Am. J. Pathol.160 , 795–800 (2002).
  • Niida Y , Stemmer-RachamimovAO, LogripMet al.: Survey of somatic mutations in tuberous sclerosis complex (TSC) hamartomas suggests different genetic mechanisms for pathogenesis of TSC lesions.Am. J. Hum. Genet.69 , 493–503 (2001).
  • Rocco JW , SidranskyD: p16(MTS-1/CDKN2/INK4a) in cancer progression.Exp. Cell Res.264 , 42–55 (2001).
  • Herman JG , MerloA, MaoLet al.: Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers.Cancer Res.55 , 4525–4530 (1995).
  • Smiraglia DJ , RushLJ, FruhwaldMCet al.: Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies.Hum. Mol. Genet.10 , 1413–1419 (2001).
  • Dulaimi E , UzzoRG, GreenbergRE, Al-SaleemT, CairnsP: Detection of bladder cancer in urine by a tumor suppressor gene hypermethylation panel.Clin. Cancer Res.10 , 1887–1893 (2004).
  • Robertson KD , JonesPA: The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53.Mol. Cell Biol.18 , 6457–6473 (1998).
  • Esteller M , CornPG, BaylinSB, HermanJG: A gene hypermethylation profile of human cancer.Cancer Res.61 , 3225–3229 (2001).
  • Esteller M , SparksA, ToyotaMet al.: Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer.Cancer Res.60 , 4366–4371 (2000).
  • Maruyama R , ToyookaS, ToyookaKOet al.: Aberrant promoter methylation profile of bladder cancer and its relationship to clinicopathological features.Cancer Res.61 , 8659–8663 (2001).
  • Neuhausen A , FlorlAR, GrimmMO, SchulzWA: DNA methylation alterations in urothelial carcinoma.Cancer Biol. Ther.5 , 993–1001 (2006).
  • Becker KF , AtkinsonMJ, ReichUet al.: E-cadherin gene mutations provide clues to diffuse type gastric carcinomas.Cancer Res.54 , 3845–3852 (1994).
  • Guilford P , HopkinsJ, HarrawayJet al.: E-cadherin germline mutations in familial gastric cancer.Nature392 , 402–405 (1998).
  • Grady WM , WillisJ, GuilfordPJet al.: Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer.Nat. Genet.26 , 16–17 (2000).
  • Kawakami T , OkamotoK, OgawaO, OkadaY: Multipoint methylation and expression analysis of tumor suppressor genes in human renal cancer cells.Urology61 , 226–230 (2003).
  • Chung WB , HongSH, KimJA, SohnYK, KimBW, KimJW: Hypermethylation of tumor-related genes in genitourinary cancer cell lines.J. Korean Med. Sci.16 , 756–761 (2001).
  • Ribeiro-Filho LA , FranksJ, SasakiMet al.: CpG hypermethylation of promoter region and inactivation of E-cadherin gene in human bladder cancer.Mol. Carcinog.34 , 187–198 (2002).
  • Reinhold WC , ReimersMA, MaunakeaAKet al.: Detailed DNA methylation profiles of the E-cadherin promoter in the NCI-60 cancer cells.Mol. Cancer Ther.6 , 391–403 (2007).
  • Stirzaker C , MillarDS, PaulCLet al.: Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors.Cancer Res.57 , 2229–2237 (1997).
  • Bachman KE , HermanJG, CornPGet al.: Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers.Cancer Res.59 , 798–802 (1999).
  • Kagan J , SrivastavaS, BarkerPE, BelinskySA, CairnsP: Towards clinical application of methylated DNA sequences as cancer biomarkers: a joint NCI‘s EDRN and NIST workshop on standards, methods, assays, reagents and tools.Cancer Res.67 , 4545–4549 (2007).
  • Dammann R , LiC, YoonJH, ChinPL, BatesS, PfeiferGP: Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3.Nat. Genet.25 , 315–319 (2000).
  • Dreijerink K , BragaE, KuzminIet al.: The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis.Proc. Natl Acad. Sci. USA98 , 7504–7509 (2001).
  • Morrissey C , MartinezA, ZatykaMet al.: Epigenetic inactivation of the RASSF1A 3p21.3 tumor suppressor gene in both clear cell and papillary renal cell carcinoma.Cancer Res.61 , 7277–7281 (2001).
  • Yoon JH , DammannR, PfeiferGP: Hypermethylation of the CpG island of the RASSF1A gene in ovarian and renal cell carcinomas.Int. J. Cancer94 , 212–217 (2001).
  • Chan MW , ChanLW, TangNLet al.: Frequent hypermethylation of promoter region of RASSF1A in tumor tissues and voided urine of urinary bladder cancer patients.Int. J. Cancer104 , 611–616 (2003).
  • Lee MG , KimHY, ByunDSet al.: Frequent epigenetic inactivation of RASSF1A in human bladder carcinoma.Cancer Res.61 , 6688–6692 (2001).
  • Lee WH , MortonRA, EpsteinJIet al.: Cytidine methylation of regulatory sequences near the πι-class glutathione S-transferase gene accompanies human prostatic carcinogenesis.Proc. Natl Acad. Sci. USA91 , 11733–11737 (1994).
  • Chan MW , ChanLW, TangNLet al.: Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients.Clin. Cancer Res.8 , 464–470 (2002).
  • Esteller M , CornPG, UrenaJM, GabrielsonE, BaylinSB, HermanJG: Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia.Cancer Res.58 , 4515–4518 (1998).
  • Esteller M , HamiltonSR, BurgerPC, BaylinSB, HermanJG: Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia.Cancer Res.59 , 793–797 (1999).
  • Hoque MO , BegumS, TopalogluOet al.: Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer.Cancer Res.64 , 5511–5517 (2004).
  • Kissil JL , FeinsteinE, CohenOet al.: DAP-kinase loss of expression in various carcinoma and B-cell lymphoma cell lines: possible implications for role as tumor suppressor gene.Oncogene15 , 403–407 (1997).
  • Katzenellenbogen RA , BaylinSB, HermanJG: Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies.Blood93 , 4347–4353 (1999).
  • Gonzalgo ML , YegnasubramanianS, YanGet al.: Molecular profiling and classification of sporadic renal cell carcinoma by quantitative methylation analysis.Clin. Cancer Res.10 , 7276–7283 (2004).
  • Wethkamp N , RampU, GeddertHet al.: Expression of death-associated protein kinase during tumour progression of human renal cell carcinomas: hypermethylation-independent mechanisms of inactivation.Eur. J. Cancer42 , 264–274 (2006).
  • Tada Y , WadaM, TaguchiKet al.: The association of death-associated protein kinase hypermethylation with early recurrence in superficial bladder cancers.Cancer Res.62 , 4048–4053 (2002).
  • Christoph F , KempkensteffenC, WeikertSet al.: Methylation of tumour suppressor genes APAF-1 and DAPK-1 and in vitro effects of demethylating agents in bladder and kidney cancer.Br. J. Cancer95 , 1701–1707 (2006).
  • Marsit CJ , HousemanEA, ChristensenBCet al.: Examination of a CpG island methylator phenotype and implications of methylation profiles in solid tumors.Cancer Res.66 , 10621–10629 (2006).
  • Sathyanarayana UG , MaruyamaR, PadarAet al.: Molecular detection of noninvasive and invasive bladder tumor tissues and exfoliated cells by aberrant promoter methylation of laminin-5 encoding genes.Cancer Res.64 , 1425–1430 (2004).
  • Takahashi T , SuzukiM, ShigematsuHet al.: Aberrant methylation of Reprimo in human malignancies.Int. J. Cancer115 , 503–510 (2005).
  • Iliopoulos D , GulerG, HanSYet al.: Fragile genes as biomarkers: epigenetic control of WWOX and FHIT in lung, breast and bladder cancer.Oncogene24 , 1625–1633 (2005).
  • Kvasha S , GordiyukV, KondratovAet al.: Hypermethylation of the 5´CpG island of the FHIT gene in clear cell renal carcinomas.Cancer Lett.265 , 250–257 (2008).
  • Morris MR , GentleD, AbdulrahmanMet al.: Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma.Cancer Res.65 , 4598–4606 (2005).
  • Agathanggelou A , DallolA, Zochbauer-MullerSet al.: Epigenetic inactivation of the candidate 3p21.3 suppressor gene BLU in human cancers.Oncogene22 , 1580–1588 (2003).
  • Stoehr R , WissmannC, SuzukiHet al.: Deletions of chromosome 8p and loss of sFRP1 expression are progression markers of papillary bladder cancer.Lab. Invest.84 , 465–478 (2004).
  • Marsit CJ , KaragasMR, AndrewAet al.: Epigenetic inactivation of SFRP genes and TP53 alteration act jointly as markers of invasive bladder cancer.Cancer Res.65 , 7081–7085 (2005).
  • Dahl E , WiesmannF, WoenckhausMet al.: Frequent loss of SFRP1 expression in multiple human solid tumours: association with aberrant promoter methylation in renal cell carcinoma.Oncogene26 , 5680–5691 (2007).
  • Kagara I , EnokidaH, KawakamiKet al.: CpG hypermethylation of the UCHL1 gene promoter is associated with pathogenesis and poor prognosis in renal cell carcinoma.J. Urol.180 , 343–351 (2008).
  • Urakami S , ShiinaH, EnokidaHet al.: Combination analysis of hypermethylated Wnt-antagonist family genes as a novel epigenetic biomarker panel for bladder cancer detection.Clin. Cancer Res.12 , 2109–2116 (2006).
  • de Caestecker MP , PiekE, RobertsAB: Role of transforming growth factor-β signaling in cancer.J. Natl Cancer Inst.92 , 1388–1402 (2000).
  • Roberts AB , WakefieldLM: The two faces of transforming growth factor β in carcinogenesis.Proc. Natl Acad. Sci. USA100 , 8621–8623 (2003).
  • Teicher BA : Malignant cells, directors of the malignant process: role of transforming growth factor-β.Cancer Metastasis Rev.20 , 133–143 (2001).
  • Suzuki M , ShigematsuH, ShamesDSet al.: DNA methylation-associated inactivation of TGFβ-related genes DRM/Gremlin, RUNX3, and HPP1 in human cancers.Br. J. Cancer93 , 1029–1037 (2005).
  • Okuda H , ToyotaM, IshidaWet al.: Epigenetic inactivation of the candidate tumor suppressor gene HOXB13 in human renal cell carcinoma.Oncogene25 , 1733–1742 (2006).
  • Yamada D , KikuchiS, WilliamsYNet al.: Promoter hypermethylation of the potential tumor suppressor DAL-1/4.1B gene in renal clear cell carcinoma.Int. J. Cancer118 , 916–923 (2006).
  • To KK , ZhanZ, BatesSE: Aberrant promoter methylation of the ABCG2 gene in renal carcinoma.Mol. Cell Biol.26 , 8572–8585 (2006).
  • Kawakami T , ChanoT, MinamiK, OkabeH, OkadaY, OkamotoK: Imprinted DLK1 is a putative tumor suppressor gene and inactivated by epimutation at the region upstream of GTL2 in human renal cell carcinoma.Hum. Mol. Genet.15 , 821–830 (2006).
  • Reu FJ , BaeSI, CherkasskyLet al.: Overcoming resistance to interferon-induced apoptosis of renal carcinoma and melanoma cells by DNA demethylation.J. Clin. Oncol.24 , 3771–3779 (2006).
  • Lee MG , HuhJS, ChungSKet al.: Promoter CpG hypermethylation and downregulation of XAF1 expression in human urogenital malignancies: implication for attenuated p53 response to apoptotic stresses.Oncogene25 , 5807–5822 (2006).
  • Kempkensteffen C , HinzS, SchraderMet al.: Gene expression and promoter methylation of the XIAP-associated factor 1 in renal cell carcinomas: correlations with pathology and outcome.Cancer Lett.254 , 227–235 (2007).
  • Ibanez de Caceres I , DulaimiE, HoffmanAM, Al-SaleemT, UzzoRG, CairnsP: Identification of novel target genes by an epigenetic reactivation screen of renal cancer.Cancer Res.66 , 5021–5028 (2006).
  • Agathanggelou A , BiecheI, Ahmed-ChoudhuryJet al.: Identification of novel gene expression targets for the Ras association domain family 1 (RASSF1A) tumor suppressor gene in non-small-cell lung cancer and neuroblastoma.Cancer Res.63 , 5344–5351 (2003).
  • Mori K , EnokidaH, KagaraIet al.: CpG hypermethylation of collagen type I a2 contributes to proliferation and migration activity of human bladder cancer.Int. J. Oncol.34 , 1593–1602 (2009).
  • Liang G , GonzalesFA, JonesPA, OrntoftTF, ThykjaerT: Analysis of gene induction in human fibroblasts and bladder cancer cells exposed to the methylation inhibitor 5-aza-2´-deoxycytidine.Cancer Res.62 , 961–966 (2002).
  • Suzuki H , GabrielsonE, ChenWet al.: A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer.Nat. Genet.31 , 141–149 (2002).
  • Morris MR , GentleD, AbdulrahmanMet al.: Functional epigenomics approach to identify methylated candidate tumour suppressor genes in renal cell carcinoma.Br. J. Cancer98 , 496–501 (2008).
  • Morris MR , RickettsC, GentleDet al.: Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma.Oncogene29 , 2104–2117 (2010).
  • Seliger B , HandkeD, SchabelE, BukurJ, LichtenfelsR, DammannR: Epigenetic control of the ubiquitin carboxyl terminal hydrolase 1 in renal cell carcinoma.J. Transl. Med.7 , 90 (2009).
  • Dalgin GS , DreverM, WilliamsT, KingT, DeLisiC, LiouLS: Identification of novel epigenetic markers for clear cell renal cell carcinoma.J. Urol.180 , 1126–1130 (2008).
  • McRonald FE , MorrisMR, GentleDet al.: CpG methylation profiling in VHL related and VHL unrelated renal cell carcinoma.Mol. Cancer8 , 31 (2009).
  • Wu G , GuoZ, ChangXet al.: LOXL1 and LOXL4 are epigenetically silenced and can inhibit ras/extracellular signal-regulated kinase signaling pathway in human bladder cancer.Cancer Res.67 , 4123–4129 (2007).
  • Veerla S , PanagopoulosI, JinY, LindgrenD, HoglundM: Promoter analysis of epigenetically controlled genes in bladder cancer.Genes Chromosomes Cancer47 , 368–378 (2008).
  • Cairns P : Gene methylation and early detection of genitourinary cancer: the road ahead.Nat. Rev. Cancer7 , 531–543 (2007).
  • Teodoridis JM , HardieC, BrownR: CpG island methylator phenotype (CIMP) in cancer: causes and implications.Cancer Lett.268 , 177–186 (2008).
  • Zhang L , YuJ, WillsonJK, MarkowitzSD, KinzlerKW, VogelsteinB: Short mononucleotide repeat sequence variability in mismatch repair-deficient cancers.Cancer Res.61 , 3801–3805 (2001).
  • Esteller M : Epigenetics in cancer.N. Engl. J. Med.358 , 1148–1159 (2008).
  • Nguyen CT , WeisenbergerDJ, VelicescuMet al.: Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2´-deoxycytidine.Cancer Res.62 , 6456–6461 (2002).
  • Fraga MF , BallestarE, Villar-GareaAet al.: Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.Nat. Genet.37 , 391–400 (2005).
  • Ozdag H , TeschendorffAE, AhmedAAet al.: Differential expression of selected histone modifier genes in human solid cancers.BMC Genomics7 , 90 (2006).
  • Stransky N , VallotC, ReyalFet al.: Regional copy number-independent deregulation of transcription in cancer.Nat. Genet.38 , 1386–1396 (2006).
  • Seligson DB , HorvathS, McBrianMAet al.: Global levels of histone modifications predict prognosis in different cancers.Am. J. Pathol.174 , 1619–1628 (2009).
  • Ellinger J , KahlP, MertensCet al.: Prognostic relevance of global histone H3 lysine 4 (H3K4) methylation in renal cell carcinoma.Int. J. Cancer127 , 2360–2366 (2010).
  • Lamy P , AndersenCL, DyrskjotL, TorringN, OrntoftT, WiufC: Are microRNAs located in genomic regions associated with cancer?Br. J. Cancer95 , 1415–1418 (2006).
  • Saito Y , JonesPA: Epigenetic activation of tumor suppressor microRNAs in human cancer cells.Cell Cycle5 , 2220–2222 (2006).
  • Friedman JM , LiangG, LiuCCet al.: The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2.Cancer Res.69 , 2623–2629 (2009).
  • Catto JW , MiahS, OwenHCet al.: Distinct microRNA alterations characterize high- and low-grade bladder cancer.Cancer Res.69 , 8472–8481 (2009).
  • Dyrskjot L , OstenfeldMS, BramsenJBet al.: Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro.Cancer Res.69 , 4851–4860 (2009).
  • Wiklund ED , BramsenJB, HulfTet al.: Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer.Int. J. Cancer (2010) (Epub ahead of print).
  • Jung M , MollenkopfHJ, GrimmCet al.: MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy.J. Cell. Mol. Med.13 , 3918–3928 (2009).
  • Nakada C , MatsuuraK, TsukamotoYet al.: Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c.J. Pathol.216 , 418–427 (2008).
  • Juan D , AlexeG, AntesTet al.: Identification of a microRNA panel for clear-cell kidney cancer.Urology75(4) , 835–841 (2010).
  • Banumathy G , CairnsP: Signaling pathways in renal cell carcinoma.Cancer Biol. Ther.10(7) , 658–664 (2010).
  • Battagli C , UzzoRG, DulaimiEet al.: Promoter hypermethylation of tumor suppressor genes in urine from kidney cancer patients.Cancer Res.63 , 8695–8699 (2003).
  • Friedrich MG , WeisenbergerDJ, ChengJCet al.: Detection of methylated apoptosis-associated genes in urine sediments of bladder cancer patients.Clin. Cancer Res.10 , 7457–7465 (2004).
  • Hoque MO , BegumS, TopalogluOet al.: Quantitation of promoter methylation of multiple genes in urine DNA and bladder cancer detection.J. Natl Cancer Inst.98 , 996–1004 (2006).
  • Yates DR , RehmanI, MeuthM, CrossSS, HamdyFC, CattoJW: Methylational urinalysis: a prospective study of bladder cancer patients and age stratified benign controls.Oncogene25 , 1984–1988 (2006).
  • Renard I , JoniauS, van Cleynenbreugel B et al.: Identification and validation of the methylated TWIST1 and NID2 genes through real-time methylation-specific polymerase chain reaction assays for the noninvasive detection of primary bladder cancer in urine samples. Eur. Urol.58(1) , 96–104 (2009).
  • Costa VL , HenriqueR, RibeiroFRet al.: Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors.BMC Cancer7 , 133 (2007).
  • Gutierrez MI , SirajAK, KhaledH, KoonN, El-RifaiW, BhatiaK: CpG island methylation in schistosoma- and non-schistosoma-associated bladder cancer.Mod. Pathol.17 , 1268–1274 (2004).
  • Breault JE , ShiinaH, IgawaMet al.: Methylation of the γ-catenin gene is associated with poor prognosis of renal cell carcinoma.Clin. Cancer Res.11 , 557–564 (2005).
  • Yates DR , RehmanI, AbbodMFet al.: Promoter hypermethylation identifies progression risk in bladder cancer.Clin. Cancer Res.13 , 2046–2053 (2007).
  • Gollob JA , SciambiCJ, PetersonBLet al.: Phase I trial of sequential low-dose 5-aza-2‘-deoxycytidine plus high-dose intravenous bolus interleukin-2 in patients with melanoma or renal cell carcinoma.Clin. Cancer Res.12 , 4619–4627 (2006).
  • Winquist E , KnoxJ, AyoubJPet al.: Phase II trial of DNA methyltransferase 1 inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a National Cancer Institute of Canada Clinical Trials Group investigational new drug study.Invest. New Drugs24 , 159–167 (2006).
  • Hammers HJ , VerheulH, WilkyBet al.: Phase I safety and pharmacokinetic/pharmacodynamic results of the histone deacetylase inhibitor vorinostat in combination with bevacizumab in patients with kidney cancer.J. Clin. Oncol.26, (2008) (Abstract 16094).
  • Verheul HM , SalumbidesB, van Erp K et al.: Combination strategy targeting the hypoxia inducible factor-1 α with mammalian target of rapamycin and histone deacetylase inhibitors. Clin. Cancer Res.14 , 3589–3597 (2008).
  • Shang D , LiuY, MatsuiYet al.: Demethylating agent 5-aza-2´-deoxycytidine enhances susceptibility of bladder transitional cell carcinoma to cisplatin.Urology71 , 1220–1225 (2008).
  • Costello JF , FrühwaldMC, SmiragliaDJet al.: Aberrant CpG-island methylation has non-random and tumour-type-specific patterns.Nature Genet.25 , 132–138 (2000).
  • Sjoblom T , JonesS, WoodLDet al.: The consensus coding sequences of human breast and colorectal cancers.Science314 , 268–274 (2006).
  • Aleman A , CebrianV, AlvarezMet al.: Identification of PMF1 methylation in association with bladder cancer progression.Clin. Cancer Res.14 , 8236–8243 (2008).
  • Kwabi-Addo B , ChungW, ShenLet al.: Age-related DNA methylation changes in normal human prostate tissues.Clin. Cancer Res.13 , 3796–3802 (2007).
  • Wolff EM , LiangG, CortezCCet al.: RUNX3 methylation reveals that bladder tumors are older in patients with a history of smoking.Cancer Res.68 , 6208–6214 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.