282
Views
0
CrossRef citations to date
0
Altmetric
Review

Global Epigenetic Profiling In Bladder Cancer

, &
Pages 35-45 | Published online: 17 Feb 2011

Bibliography

  • Jemal A , SiegelR, XuJ, WardE: Cancer statistics, 2010.CA Cancer J. Clin.60(5) , 277–300 (2010).
  • Avritscher EB , CooksleyCD, GrossmanHBet al.: Clinical model of lifetime cost of treating bladder cancer and associated complications.Urology68(3) , 549–553 (2006).
  • Sangar VK , RagavanN, MatanheliaSS, WatsonMW, BladesRA: The economic consequences of prostate and bladder cancer in the UK.BJU Int.95(1) , 59–63 (2005).
  • PJ Goebell , Knowles MA: Bladder cancer or bladder cancers? Genetically distinct malignant conditions of the urothelium. Urol. Oncol.28(4) , 409–428 (2010).
  • Catto JW , RosarioDJ: The road to cystectomy: who, when and why? EAU update series.Eur. Urol.3(4) , 171–179 (2005).
  • Catto JW , YatesDR, RehmanIet al.: Behavior of urothelial carcinoma with respect to anatomical location.J. Urol.177(5) , 1715–1720 (2007).
  • Stein JP , LieskovskyG, CoteRet al.: Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients.J. Clin. Oncol.19(3) , 666–675 (2001).
  • Knowles MA: Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese? Carcinogenesis27(3) , 361–373 (2006).
  • Dhawan D , HamdyFC, RehmanIet al.: Evidence for the early onset of aberrant promoter methylation in urothelial carcinoma.J. Pathol.209(3) , 336–343 (2006).
  • Dyrskjot L , KruhofferM, ThykjaerTet al.: Gene expression in the urinary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification.Cancer Res.64(11) , 4040–4048 (2004).
  • van Oers JM , ZwarthoffEC, RehmanIet al.: FGFR3 mutations indicate better survival in invasive upper urinary tract and bladder tumors.Eur. Urol.55(3) , 650–657 (2009).
  • Jebar AH , HurstCD, TomlinsonDCet al.: FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma.Oncogene24(33) , 5218–5225 (2005).
  • Zhang ZT , PakJ, HuangHYet al.: Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation.Oncogene20(16) , 1973–1980 (2001).
  • Zhang ZT , PakJ, ShapiroE, SunTT, WuXR: Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma.Cancer Res.59(14) , 3512–3517 (1999).
  • Spruck CH , OhneseitPF, Gonzalez-ZuluetaMet al.: Two molecular pathways to transitional cell carcinoma of the bladder.Cancer Res.54(3) , 784–788 (1994).
  • Catto JW , MiahS, OwenHCet al.: Distinct miRNA alterations characterize high- and low-grade bladder cancer.Cancer Res.69(21) , 8472–8481 (2009).
  • Yates DR , RehmanI, AbbodMFet al.: Promoter hypermethylation identifies progression risk in bladder cancer.Clin. Cancer Res.13(7) , 2046–2053 (2007).
  • Dyrskjot L , OstenfeldMS, BramsenJBet al.: Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro.Cancer Res.69(11) , 4851–4860 (2009).
  • Serizawa RR , RalfkiaerU, StevenKet al.: Integrated genetic and epigenetic analysis of bladder cancer reveals an additive diagnostic value of FGFR3 mutations and hypermethylation events.Int J. Cancer doi: 10.1002/ijc.25651 (2010) (Epub ahead of print).
  • Weisenberger DJ , SiegmundKD, CampanMet al.: CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer.Nat. Genet.38(7) , 787–793 (2006).
  • Ordway JM , WilliamsK, CurranT: Transcription repression in oncogenic transformation: common targets of epigenetic repression in cells transformed by Fos, Ras or Dnmt1.Oncogene23(21) , 3737–3748 (2004).
  • Watt F , MolloyPL: Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter.Genes Dev.2(9) , 1136–1143 (1988).
  • Nan X , CampoyFJ, BirdA: MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin.Cell88(4) , 471–481 (1997).
  • Eden A , GaudetF, WaghmareA, JaenischR: Chromosomal instability and tumors promoted by DNA hypomethylation.Science300(5618) , 455 (2003).
  • Gaudet F , HodgsonJG, EdenAet al.: Induction of tumors in mice by genomic hypomethylation.Science300(5618) , 489–492 (2003).
  • Estecio MR , GharibyanV, ShenLet al.: LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability.PLoS ONE2(5) , e399 (2007).
  • Prusty BK , zur Hausen H, Schmidt R, Kimmel R, de Villiers EM: Transcription of HERV-E and HERV-E-related sequences in malignant and non-malignant human haematopoietic cells. Virology382(1) , 37–45 (2008).
  • Lamprecht B , WalterK, KreherSet al.: Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma.Nat. Med.16(5) , 571–579 (2010).
  • Wolff EM , ByunHM, HanHFet al.: Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer.PLoS Genet.6(4) , e1000917 (2010).
  • Buscher K , HahnS, HofmannMet al.: Expression of the human endogenous retrovirus-K transmembrane envelope, Rec and Np9 proteins in melanomas and melanoma cell lines.Melanoma Res.16(3) , 223–234 (2006).
  • Ishida T , ObataY, OharaNet al.: Identification of the HERV-K gag antigen in prostate cancer by SEREX using autologous patient serum and its immunogenicity.Cancer Immun.8 , 15 (2008).
  • Wang-Johanning F , LiuJ, RycajKet al.: Expression of multiple human endogenous retrovirus surface envelope proteins in ovarian cancer.Int. J. Cancer.120(1) , 81–90 (2007).
  • Dudziec E , MiahS, ChoudhryHet al.: Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer.Clin. Cancer Res. (2010) (Epub ahead of print).
  • Marsit CJ , HousemanEA, ChristensenBCet al.: Identification of methylated genes associated with aggressive bladder cancer.PLoS ONE5(8) , e12334 (2010).
  • Wolff EM , ChiharaY, PanFet al.: Unique DNA methylation patterns distinguish superficial and invasive bladder cancers and establish an epigenetic field defect in premalignant tissue.Cancer Res.70(20) , 8169–8178 (2010).
  • Catto JW , HartmannA, StoehrRet al.: Multifocal urothelial cancers with the mutator phenotype are of monoclonal origin and require panurothelial treatment for tumor clearance.J. Urol.175(6) , 2323–2330 (2006).
  • Catto JW , AzzouziAR, RehmanIet al.: Promoter hypermethylation is associated with tumor location, stage, and subsequent progression in transitional cell carcinoma.J. Clin. Oncol.23(13) , 2903–2910 (2005).
  • Cebrian V , AlvarezM, AlemanAet al.: Discovery of myopodin methylation in bladder cancer.J. Pathol.216(1) , 111–119 (2008).
  • Graff JR , GabrielsonE, FujiiH, BaylinSB, HermanJG: Methylation patterns of the E-cadherin 5´ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression.J. Biol Chem.275(4) , 2727–2732 (2000).
  • Byun HM , WongHL, BirnsteinEAet al.: Examination of IGF2 and H19 loss of imprinting in bladder cancer.Cancer Res.67(22) , 10753–10758 (2007).
  • Wilhelm CS , KelseyKT, ButlerRet al.: Implications of LINE1 methylation for bladder cancer risk in women.Clin. Cancer Res.16(5) , 1682–1689 (2010).
  • Choi SH , WorswickS, ByunHMet al.: Changes in DNA methylation of tandem DNA repeats are different from interspersed repeats in cancer.Int J. Cancer.125(3) , 723–729 (2009).
  • Moore LE , PfeifferRM, PoscabloCet al.: Genomic DNA hypomethylation as a biomarker for bladder cancer susceptibility in the Spanish Bladder Cancer Study: a case–control study.Lancet Oncol.9(4) , 359–366 (2008).
  • Kouzarides T : Chromatin modifications and their function.Cell.128(4) , 693–705 (2007).
  • Nguyen CT , WeisenbergerDJ, VelicescuMet al.: Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2´-deoxycytidine.Cancer Res.62(22) , 6456–6461 (2002).
  • Wiencke JK , ZhengS, MorrisonZ, YehRF: Differentially expressed genes are marked by histone 3 lysine 9 trimethylation in human cancer cells.Oncogene27(17) , 2412–2421 (2008).
  • Vakoc CR , MandatSA, OlenchockBA, BlobelGA: Histone H3 lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin.Mol. Cell19(3) , 381–391 (2005).
  • Squazzo SL , O‘GeenH, KomashkoVMet al.: Suz12 binds to silenced regions of the genome in a cell-type-specific manner.Genome Res.16(7) , 890–900 (2006).
  • Kondo Y , ShenL, ChengASet al.: Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation.Nat. Genet.40(6) , 741–750 (2008).
  • Weikert S , ChristophF, KollermannJet al.: Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas.Int. J. Mol. Med.16(2) , 349–353 (2005).
  • Varambally S , DhanasekaranSM, ZhouMet al.: The polycomb group protein EZH2 is involved in progression of prostate cancer.Nature419(6907) , 624–629 (2002).
  • Kleer CG , CaoQ, VaramballySet al.: EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells.Proc. Natl Acad. Sci. USA100(20) , 11606–11611 (2003).
  • Cao Q , YuJ, DhanasekaranSMet al.: Repression of E-cadherin by the polycomb group protein EZH2 in cancer.Oncogene27(58) , 7274–7284 (2008).
  • Ou JN , TorrisaniJ, UnterbergerAet al.: Histone deacetylase inhibitor Trichostatin A induces global and gene-specific DNA demethylation in human cancer cell lines.Biochem. Pharmacol.73(9) , 1297–1307 (2007).
  • Sachs MD , RamamurthyM, PoelHet al.: Histone deacetylase inhibitors upregulate expression of the coxsackie adenovirus receptor (CAR) preferentially in bladder cancer cells.Cancer Gene Ther.11(7) , 477–486 (2004).
  • Selbach M , SchwanhausserB, ThierfelderNet al.: Widespread changes in protein synthesis induced by microRNAs.Nature455(7209) , 58–63 (2008).
  • Croce CM : Causes and consequences of microRNA dysregulation in cancer.Nat. Rev. Genet.10(10) , 704–714 (2009).
  • Gottardo F , LiuCG, FerracinMet al.: Micro-RNA profiling in kidney and bladder cancers.Urol. Oncol.25(5) , 387–392 (2007).
  • Valadi H , EkstromK, BossiosAet al.: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.Nat. Cell Biol.9(6) , 654–659 (2007).
  • Hanke M , HoefigK, MerzHet al.: A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer.Urol. Oncol.28(6) , 655–661 (2010).
  • Saito Y , LiangG, EggerGet al.: Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells.Cancer Cell9(6) , 435–443 (2006).
  • Saito Y , FriedmanJM, ChiharaYet al.: Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells.Biochem. Biophys. Res. Commun.379(3) , 726–731 (2009).
  • Wiklund ED , BramsenJB, HulfTet al.: Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer.Int. J. Cancer (2010) (Epub ahead of print).
  • Fabbri M , GarzonR, CimminoAet al.: MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3BProc. Natl Acad. Sci. USA104(40) , 15805–15810 (2007).
  • Friedman JM , LiangG, LiuCCet al.: The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2.Cancer Res.69(6) , 2623–2629 (2009).
  • Brunk BP , GoldhamerDJ, EmersonCC Jr: Regulated demethylation of the myoD distal enhancer during skeletal myogenesis. Dev. Biol.177(2) , 490–503 (1996).
  • Fenaux P , MuftiGJ, Hellstrom-LindbergEet al.: Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, Phase III study.Lancet Oncol.10(3) , 223–232 (2009).
  • Gore SD , BaylinS, SugarEet al.: Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms.Cancer Res.66(12) , 6361–6369 (2006).
  • Kim MS , BlakeM, BaekJHet al.: Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA.Cancer Res.63(21) , 7291–7300 (2003).
  • Hauswald S , Duque-AfonsoJ, WagnerMMet al.: Histone deacetylase inhibitors induce a very broad, pleiotropic anticancer drug resistance phenotype in acute myeloid leukemia cells by modulation of multiple ABC transporter genes.Clin. Cancer Res.15(11) , 3705–3715 (2009).
  • Cheng JC , WeisenbergerDJ, GonzalesFAet al.: Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells.Mol. Cell Biol.24(3) , 1270–1278 (2004).
  • Christoph F , KempkensteffenC, WeikertSet al.: Methylation of tumor suppressor genes APAF-1 and DAPK-1 and in vitro effects of demethylating agents in bladder and kidney cancer.Br. J. Cancer.95(12) , 1701–1707 (2006).
  • Aleman A , CebrianV, AlvarezMet al.: Identification of PMF1 methylation in association with bladder cancer progression.Clin. Cancer Res.14(24) , 8236–8243 (2008).
  • Huang Y , StewartTM, WuYet al.: Novel oligoamine analogues inhibit lysine-specific demethylase 1 and induce reexpression of epigenetically silenced genes.Clin. Cancer Res.15(23) , 7217–7228 (2009).
  • Lakshmikuttyamma A , ScottSA, DeCoteauJF, GeyerCR: Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition.Oncogene29(4) , 576–588 (2010).
  • Tan J , YangX, ZhuangLet al.: Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells.Genes Dev.21(9) , 1050–1063 (2007).
  • Gupta R , NagarajanA, WajapeyeeN: Advances in genome-wide DNA methylation analysis.Biotechniques49(4) , iii–xi (2010).
  • Pomraning KR , SmithKM, FreitagM: Genome-wide high throughput analysis of DNA methylation in eukaryotes.Methods47(3) , 142–150 (2009).
  • Park PJ : ChIP-seq: advantages and challenges of a maturing technology.Nat. Rev. Genet.10(10) , 669–680 (2009).
  • Irizarry RA , Ladd-AcostaC, WenBet al.: The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores.Nat. Genet.41(2) , 178–186 (2009).
  • Lister R , PelizzolaM, DowenRHet al.: Human DNA methylomes at base resolution show widespread epigenomic differences.Nature462(7271) , 315–322 (2009).
  • Kim WJ , KimEJ, JeongPet al.: RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors.Cancer Res.65(20) , 9347–9354 (2005).
  • Dominguez G , CarballidoJ, SilvaJet al.: p14ARF promoter hypermethylation in plasma DNA as an indicator of disease recurrence in bladder cancer patients.Clin. Cancer Res.8(4) , 980–985 (2002).
  • Chan MW , ChanLW, TangNLet al.: Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients.Clin. Cancer Res.8(2) , 464–470 (2002).
  • Hoque MO , BegumS, TopalogluOet al.: Quantitation of promoter methylation of multiple genes in urine DNA and bladder cancer detection.J. Natl Cancer Inst.98(14) , 996–1004 (2006).
  • Friedrich MG , ChandrasomaS, SiegmundKDet al.: Prognostic relevance of methylation markers in patients with non-muscle invasive bladder carcinoma.Eur. J. Cancer.41(17) , 2769–2778 (2005).
  • Ellinger J , El Kassem N, Heukamp LC et al.: Hypermethylation of cell-free serum DNA indicates worse outcome in patients with bladder cancer. J. Urol.179(1) , 346–352 (2008).
  • Maruyama R , ToyookaS, ToyookaKOet al.: Aberrant promoter methylation profile of bladder cancer and its relationship to clinicopathological features.Cancer Res.61(24) , 8659–8663 (2001).
  • Abbosh PH , WangM, EbleJNet al.: Hypermethylation of tumor-suppressor gene CpG islands in small-cell carcinoma of the urinary bladder.Mod. Pathol.21(3) , 355–362 (2008).
  • Yang J , XuZ, LiJet al.: XPC epigenetic silence coupled with p53 alteration has a significant impact on bladder cancer outcome.J. Urol.184(1) , 336–343 (2010).
  • Friedrich MG , WeisenbergerDJ, ChengJCet al.: Detection of methylated apoptosis-associated genes in urine sediments of bladder cancer patients.Clin. Cancer Res.10(22) , 7457–7465 (2004).
  • Marsit CJ , HousemanEA, SchnedAR, KaragasMR, KelseyKT: Promoter hypermethylation is associated with current smoking, age, gender and survival in bladder cancer.Carcinogenesis28(8) , 1745–1751 (2007).
  • Sathyanarayana UG , MaruyamaR, PadarAet al.: Molecular detection of noninvasive and invasive bladder tumor tissues and exfoliated cells by aberrant promoter methylation of laminin-5 encoding genes.Cancer Res.64(4) , 1425–1430 (2004).
  • Aleman A , AdrienL, Lopez-SerraLet al.: Identification of DNA hypermethylation of SOX9 in association with bladder cancer progression using CpG microarrays.Br. J. Cancer98(2) , 466–473 (2008).
  • Tada Y , WadaM, TaguchiKet al.: The association of death-associated protein kinase hypermethylation with early recurrence in superficial bladder cancers.Cancer Res.62(14) , 4048–4053 (2002).
  • Chiyomaru T , EnokidaH, KawakamiKet al.: Functional role of LASP1 in cell viability and its regulation by microRNAs in bladder cancer.Urol. Oncol. (2010) (Epub ahead of print).
  • Cao Y , YuSL, WangYet al.: MicroRNA-dependent regulation of PTEN after arsenic trioxide treatment in bladder cancer cell line T24.Tumor Biol.32(1) , 179–188 (2010).
  • Ichimi T , EnokidaH, OkunoYet al.: Identification of novel microRNA targets based on microRNA signatures in bladder cancer.Int J. Cancer.125(2) , 345–352 (2009).
  • Lodygin D , TarasovV, EpanchintsevAet al.: Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer.Cell Cycle7(16) , 2591–2600 (2008).
  • Huang L , LuoJ, CaiQet al.: MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3.Int. J. Cancer doi: 10.1002/ijc.25509 (2010) (Epub ahead of print).
  • Chiyomaru T , EnokidaH, TataranoSet al.: miR-145 and miR-133a function as tumor suppressors and directly regulate FSCN1 expression in bladder cancer.Br. J. Cancer102(5) , 883–891 (2010).
  • Ostenfeld MS , BramsenJB, LamyPet al.: miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors.Oncogene29(7) , 1073–1084 (2010).
  • Adam L , ZhongM, ChoiWet al.: miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy.Clin. Cancer Res.15(16) , 5060–5072 (2009).
  • Lu Q , LuC, ZhouGPet al.: MicroRNA-221 silencing predisposed human bladder cancer cells to undergo apoptosis induced by TRAIL.Urol. Oncol. (6) , 635–641 (2009).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.