312
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Regulation in Cell Reprogramming Revealed by Genome-Wide Analysis

, &
Pages 73-81 | Published online: 17 Feb 2011

Bibliography

  • Barski A , CuddapahS, CuiKet al.: High-resolution profiling of histone methylations in the human genome.Cell129(4) , 823–837 (2007).
  • Schwartz S , MeshorerE, AstG: Chromatin organization marks exon–intron structure.Nat. Struct. Mol. Biol.16(9) , 990–995 (2009).
  • Schones DE , CuiK, CuddapahSet al.: Dynamic regulation of nucleosome positioning in the human genome.Cell132(5) , 887–898 (2008).
  • Law JA , JacobsenSE: Establishing, maintaining and modifying DNA methylation patterns in plants and animals.Nat. Rev. Genet.11(3) , 204–220 (2010).
  • Bernstein BE , MeissnerA, LanderES: The mammalian epigenome.Cell128(4) , 669–681 (2007).
  • Hochedlinger K , PlathK: Epigenetic reprogramming and induced pluripotency.Development136(4) , 509–523 (2009).
  • Esteller M : Cancer epigenomics: DNA methylomes and histone-modification maps.Nat. Rev. Genet.8(4) , 286–298 (2007).
  • Simon SA , ZhaiJ, NandetyRSet al.: Short-read sequencing technologies for transcriptional analyses.Annu. Rev. Plant Biol.60 , 305–333 (2009).
  • Lanzuolo C , OrlandoV: The function of the epigenome in cell reprogramming.Cell Mol. Life Sci.64(9) , 1043–1062 (2007).
  • Takahashi K , YamanakaS: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell126(4) , 663–676 (2006).
  • Takahashi K , TanabeK, OhnukiMet al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell131(5) , 861–872 (2007).
  • Cho HJ , LeeCS, KwonYWet al.: Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation.Blood116(3) , 386–395 (2010).
  • Djuric U , EllisJ: Epigenetics of induced pluripotency, the seven-headed dragon.Stem Cell. Res. Ther.1(1) , 3 (2010).
  • Jacinto FV , BallestarE, EstellerM: Methyl-DNA immunoprecipitation (MeDIP): Hunting down the DNA methylome.Biotechniques44(1) , 35, 37, 39 passim (2008).
  • Bibikova M , LeJ, BarnesBet al.: Genome-wide DNA methylation profiling using infinium® assay.Epigenomics1(1) , 177–200 (2009).
  • Brinkman AB , SimmerF, MaK, KaanA, ZhuJ, StunnenbergHG: Whole-genome DNA methylation profiling using methylcap-seq.Methods52(3) , 232–236 (2010).
  • Serre D , LeeBH, TingAH: MBD-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome.Nucleic Acids Res.38(2) , 391–399 (2010).
  • Meissner A , MikkelsenTS, GuHet al.: Genome-scale DNA methylation maps of pluripotent and differentiated cells.Nature454(7205) , 766–770 (2008).
  • Lister R , O‘MalleyRC, Tonti-FilippiniJet al.: Highly integrated single-base resolution maps of the epigenome in Arabidopsis.Cell133(3) , 523–536 (2008).
  • Harris RA , WangT, CoarfaCet al.: Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications.Nat. Biotechnol.28(10) , 1097–1105 (2010).
  • Bock C , TomazouEM, BrinkmanABet al.: Quantitative comparison of genome-wide DNA methylation mapping technologies.Nat. Biotechnol.28(10) , 1106–1114 (2010).
  • Beck S : Taking the measure of the methylome.Nat. Biotechnol.28(10) , 1026–1028 (2010).
  • Cokus SJ , FengS, ZhangXet al.: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning.Nature452(7184) , 215–219 (2008).
  • Lister R , PelizzolaM, DowenRHet al.: Human DNA methylomes at base resolution show widespread epigenomic differences.Nature462(7271) , 315–322 (2009).
  • Johnson DS , MortazaviA, MyersRM, WoldB: Genome-wide mapping of in vivo protein–DNA interactions.Science316(5830) , 1497–1502 (2007).
  • Park PJ : ChIP-seq: advantages and challenges of a maturing technology.Nat. Rev. Genet.10(10) , 669–680 (2009).
  • Robertson G , HirstM, BainbridgeMet al.: Genome-wide profiles of stat1 DNA association using chromatin immunoprecipitation and massively parallel sequencing.Nat. Methods4(8) , 651–657 (2007).
  • Cui K , ZangC, RohTYet al.: Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation.Cell Stem Cell4(1) , 80–93 (2009).
  • Wang Z , ZangC, RosenfeldJAet al.: Combinatorial patterns of histone acetylations and methylations in the human genome.Nat. Genet.40(7) , 897–903 (2008).
  • Araki Y , WangZ, ZangCet al.: Genome-wide analysis of histone methylation reveals chromatin state-based regulation of gene transcription and function of memory CD8+ T cells.Immunity30(6) , 912–925 (2009).
  • De Magalhaes JP , FinchCE, JanssensG: Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions.Ageing Res. Rev.9(3) , 315–323 (2010).
  • Pepke S , WoldB, MortazaviA: Computation for ChIP-seq and RNA-seq studies.Nat. Methods6(Suppl. 11) , S22–S32 (2009).
  • Marioni JC , MasonCE, ManeSM, StephensM, GiladY: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays.Genome Res.18(9) , 1509–1517 (2008).
  • Bernstein BE , StamatoyannopoulosJA, CostelloJFet al.: The NIH Roadmap Epigenomics Mapping Consortium.Nat. Biotechnol.28(10) , 1045–1048 (2010).
  • Satterlee JS , SchubelerD, NgHH: Tackling the epigenome: challenges and opportunities for collaboration.Nat. Biotechnol.28(10) , 1039–1044 (2010).
  • Milosavljevic A : Putting epigenome comparison into practice.Nat. Biotechnol.28(10) , 1053–1056 (2010).
  • Mikkelsen TS , HannaJ, ZhangXet al.: Dissecting direct reprogramming through integrative genomic analysis.Nature454(7200) , 49–55 (2008).
  • Guenther MG , FramptonGM, SoldnerFet al.: Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells.Cell Stem Cell7(2) , 249–257 (2010).
  • Meshorer E , MisteliT: Chromatin in pluripotent embryonic stem cells and differentiation.Nat. Rev.7(7) , 540–546 (2006).
  • Efroni S , DuttaguptaR, ChengJet al.: Global transcription in pluripotent embryonic stem cells.Cell Stem Cell2(5) , 437–447 (2008).
  • Meshorer E , YellajoshulaD, GeorgeE, ScamblerPJ, BrownDT, MisteliT: Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells.Dev. Cell10(1) , 105–116 (2006).
  • Bantignies F , CavalliG: Cellular memory and dynamic regulation of polycomb group proteins.Curr. Opin. Cell. Biol.18(3) , 275–283 (2006).
  • Guenther MG , LevineSS, BoyerLA, JaenischR, YoungRA: A chromatin landmark and transcription initiation at most promoters in human cells.Cell130(1) , 77–88 (2007).
  • Bernstein BE , MikkelsenTS, XieXet al.: A bivalent chromatin structure marks key developmental genes in embryonic stem cells.Cell125(2) , 315–326 (2006).
  • Creyghton MP , MarkoulakiS, LevineSSet al.: H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment.Cell135(4) , 649–661 (2008).
  • Wen B , WuH, ShinkaiY, IrizarryRA, FeinbergAP: Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells.Nat. Genet.41(2) , 246–250 (2009).
  • Yoshioka H , MccarreyJR, YamazakiY: Dynamic nuclear organization of constitutive heterochromatin during fetal male germ cell development in mice.Biol. Reprod.80(4) , 804–812 (2009).
  • Daujat S , WeissT, MohnFet al.: H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming.Nat. Struct. Mol. Biol.16(7) , 777–781 (2009).
  • Jones B , SuH, BhatAet al.: The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure.PLoS Genet.4(9) , e1000190 (2008).
  • Blasco MA : The epigenetic regulation of mammalian telomeres.Nat. Rev. Genet.8(4) , 299–309 (2007).
  • Deng J , ShoemakerR, XieBet al.: Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming.Nat. Biotechnol.27(4) , 353–360 (2009).
  • Houbaviy HB , MurrayMF, SharpPA: Embryonic stem cell-specific microRNAs.Dev. Cell5(2) , 351–358 (2003).
  • Suh MR , LeeY, KimJYet al.: Human embryonic stem cells express a unique set of microRNAs.Dev. Biol.270(2) , 488–498 (2004).
  • Lee RC , FeinbaumRL, AmbrosV: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell75(5) , 843–854 (1993).
  • Reinhart BJ , SlackFJ, BassonMet al.: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.Nature403(6772) , 901–906 (2000).
  • Melton C , JudsonRL, BlellochR: Opposing microRNA families regulate self-renewal in mouse embryonic stem cells.Nature463(7281) , 621–626 (2010).
  • Yu F , YaoH, ZhuPet al.: let-7 regulates self renewal and tumorigenicity of breast cancer cells.Cell131(6) , 1109–1123 (2007).
  • Slack FJ : Stem cells: big roles for small RNAs.Nature463(7281) , 621–626 (2010).
  • Viswanathan SR , DaleyGQ, GregoryRI: Selective blockade of microRNA processing by Lin28.Science320(5872) , 97–100 (2008).
  • Stefani G , SlackFJ: Small non-coding RNAs in animal development.Nat. Rev.9(3) , 219–230 (2008).
  • Unhavaithaya Y , HaoY, BeyretEet al.: MILI, a PIWI-interacting RNA-binding protein, is required for germ line stem cell self-renewal and appears to positively regulate translation.J. Biol. Chem.284(10) , 6507–6519 (2009).
  • Pei D : Regulation of pluripotency and reprogramming by transcription factors.J. Biol. Chem.284(6) , 3365–3369 (2009).
  • Simonsson S , GurdonJ: DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei.Nat. Cell Biol.6(10) , 984–990 (2004).
  • Chen X , XuH, YuanPet al.: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells.Cell133(6) , 1106–1117 (2008).
  • Kim J , ChuJ, ShenX, WangJ, OrkinSH: An extended transcriptional network for pluripotency of embryonic stem cells.Cell132(6) , 1049–1061 (2008).
  • Jaenisch R , YoungR: Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming.Cell132(4) , 567–582 (2008).
  • Singhal N , GraumannJ, WuGet al.: Chromatin-remodeling components of the BAF complex facilitate reprogramming.Cell141(6) , 943–955 (2010).
  • Schulze JM , JacksonJ, NakanishiSet al.: Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation.Mol. Cell35(5) , 626–641 (2009).
  • Hansen RS , ThomasS, SandstromRet al.: Sequencing newly replicated DNA reveals widespread plasticity in human replication timing.Proc. Natl Acad. Sci. USA107(1) , 139–144 (2010).
  • Groth A , RochaW, VerreaultA, AlmouzniG: Chromatin challenges during DNA replication and repair.Cell128(4) , 721–733 (2007).
  • Gondor A , OhlssonR: Replication timing and epigenetic reprogramming of gene expression: a two-way relationship?Nat. Rev. Genet.10(4) , 269–276 (2009).
  • Sarg B , KoutzamaniE, HelligerW, RundquistI, LindnerHH: Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging.J. Biol. Chem.277(42) , 39195–39201 (2002).
  • Bracken AP , Kleine-KohlbrecherD, DietrichNet al.: The polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells.Genes Dev.21(5) , 525–530 (2007).
  • He J , KallinEM, TsukadaY, ZhangY: The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15ink4b.Nat. Struct. Mol. Biol.15(11) , 1169–1175 (2008).
  • Yuan J , PuM, ZhangZ, LouZ: Histone H3-K56 acetylation is important for genomic stability in mammals.Cell Cycle8(11) , 1747–1753 (2009).
  • Downs JA : Histone H3K56 acetylation, chromatin assembly, and the DNA damage checkpoint.DNA Repair (Amst.)7(12) , 2020–2024 (2008).
  • Xie HF , YeM, FengR, GrafT: Stepwise reprogramming of B cells into macrophages.Cell117(5) , 663–676 (2004).
  • Vierbuchen T , OstermeierA, PangZP, KokubuY, SudhofTC, WernigM: Direct conversion of fibroblasts to functional neurons by defined factors.Nature463(7284) , U1035–U1050 (2010).
  • Zhou Q , BrownJ, KanarekA, RajagopalJ, MeltonDA: In vivo reprogramming of adult pancreatic exocrine cells to β-cells.Nature455(7213) , U627–U630 (2008).
  • Mann J , OakleyF, AkiboyeF, ElsharkawyA, ThorneAW, MannDA: Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: implications for wound healing and fibrogenesis.Cell Death Differ.14(2) , 275–285 (2007).
  • Yamanaka S : Elite and stochastic models for induced pluripotent stem cell generation.Nature460(7251) , 49–52 (2009).
  • Hanna J , SahaK, PandoBet al.: Direct cell reprogramming is a stochastic process amenable to acceleration.Nature462(7273) , 595–601 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.