397
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Regulation by Nuclear Receptors

&
Pages 59-72 | Published online: 17 Feb 2011

Bibliography

  • Shulman AI , MangelsdorfDJ: Retinoid x receptor heterodimers in the metabolic syndrome.N. Engl. J. Med.353(6) , 604–615 (2005).
  • Lonard DM , LanzRB, O‘MalleyBW: Nuclear receptor coregulators and human disease.Endocr. Rev.28(5) , 575–587 (2007).
  • Tateishi K , OkadaY, KallinEM, ZhangY: Role of JHDM2A in regulating metabolic gene expression and obesity resistance.Nature458(7239) , 757–761 (2009).
  • Ren B , RobertF, WyrickJJet al.: Genome-wide location and function of DNA binding proteins.Science290(5500) , 2306–2309 (2000).
  • Kwon YS , Garcia-BassetsI, HuttKRet al.: Sensitive ChIP-DSL technology reveals an extensive estrogen receptor α-binding program on human gene promoters.Proc. Natl Acad. Sci. USA104(12) , 4852–4857 (2007).
  • Nielsen R , PedersenTA, HagenbeekDet al.: Genome-wide profiling of PPARγ: RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis.Genes Dev.22(21) , 2953–2967 (2008).
  • Bird A : DNA methylation patterns and epigenetic memory.Genes Dev.16(1) , 6–21 (2002).
  • Pinney SE , SimmonsRA: Epigenetic mechanisms in the development of Type 2 diabetes.Trends Endocrinol. Metab.21(4) , 223–229 (2010).
  • van Straten EM , BloksVW, HuijkmanNCet al.: The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction.Am. J. Physiol. Regul. Integr. Comp. Physiol.298(2) , R275–R282 (2010).
  • Young LJ , WangZ, DonaldsonR, RissmanEF: Estrogen receptor α is essential for induction of oxytocin receptor by estrogen.Neuroreport9(5) , 933–936 (1998).
  • Champagne FA , WeaverIC, DiorioJ, SharmaS, MeaneyMJ: Natural variations in maternal care are associated with estrogen receptor α expression and estrogen sensitivity in the medial preoptic area.Endocrinology144(11) , 4720–4724 (2003).
  • Meaney MJ , AitkenDH, ViauV, SharmaS, SarrieauA: Neonatal handling alters adrenocortical negative feedback sensitivity and hippocampal type II glucocorticoid receptor binding in the rat.Neuroendocrinology50(5) , 597–604 (1989).
  • Champagne FA , WeaverIC, DiorioJ, DymovS, SzyfM, MeaneyMJ: Maternal care associated with methylation of the estrogen receptor-α1b promoter and estrogen receptor-α expression in the medial preoptic area of female offspring.Endocrinology147(6) , 2909–2915 (2006).
  • Weaver IC , CervoniN, ChampagneFAet al.: Epigenetic programming by maternal behavior.Nat. Neurosci.7(8) , 847–854 (2004).
  • McGowan PO , SasakiA, D‘AlessioACet al.: Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse.Nat. Neurosci.12(3) , 342–348 (2009).
  • Kornberg RD : Chromatin structure: a repeating unit of histones and DNA.Science184(139) , 868–871 (1974).
  • Kouzarides T : Chromatin modifications and their function.Cell128(4) , 693–705 (2007).
  • Bhaumik SR , SmithE, ShilatifardA: Covalent modifications of histones during development and disease pathogenesis.Nat. Struct. Mol. Biol.14(11) , 1008–1016 (2007).
  • Cosgrove MS , WolbergerC: How does the histone code work?Biochem. Cell Biol.83(4) , 468–476 (2005).
  • Ehrenhofer-Murray AE : Chromatin dynamics at DNA replication, transcription and repair.Eur. J. Biochem.271(12) , 2335–2349 (2004).
  • Groth A , RochaW, VerreaultA, AlmouzniG: Chromatin challenges during DNA replication and repair.Cell128(4) , 721–733 (2007).
  • Kusch T , WorkmanJL: Histone variants and complexes involved in their exchange.Subcell. Biochem.41 , 91–109 (2007).
  • Li B , CareyM, WorkmanJL: The role of chromatin during transcription.Cell128(4) , 707–719 (2007).
  • Rice JC , BriggsSD, UeberheideBet al.: Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains.Mol. Cell.12(6) , 1591–1598 (2003).
  • Shilatifard A : Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression.Annu. Rev. Biochem.75 , 243–269 (2006).
  • Wang H , ZhaiL, XuJet al.: Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage.Mol. Cell.22(3) , 383–394 (2006).
  • Zhu B , ZhengY, PhamADet al.: Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation.Mol. Cell.20(4) , 601–611 (2005).
  • Pavri R , ZhuB, LiGet al.: Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II.Cell125(4) , 703–717 (2006).
  • Nathan D , IngvarsdottirK, SternerDEet al.: Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications.Genes Dev.20(8) , 966–976 (2006).
  • Shahbazian MD , GrunsteinM: Functions of site-specific histone acetylation and deacetylation.Annu. Rev. Biochem.76 , 75–100 (2007).
  • Wen YD , PerissiV, StaszewskiLMet al.: The histone deacetylase-3 complex contains nuclear receptor corepressors.Proc. Natl Acad. Sci. USA97(13) , 7202–7207 (2000).
  • Wang Z , ZangC, CuiKet al.: Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes.Cell138(5) , 1019–1031 (2009).
  • Ramirez-Carrozzi VR , BraasD, BhattDMet al.: A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling.Cell138(1) , 114–128 (2009).
  • Kim TH , BarreraLO, ZhengMet al.: A high-resolution map of active promoters in the human genome.Nature436(7052) , 876–880 (2005).
  • Roh TY , CuddapahS, ZhaoK: Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping.Genes Dev.19(5) , 542–552 (2005).
  • Wang Z , ZangC, RosenfeldJAet al.: Combinatorial patterns of histone acetylations and methylations in the human genome.Nat. Genet.40(7) , 897–903 (2008).
  • Roh TY , CuddapahS, CuiK, ZhaoK: The genomic landscape of histone modifications in human T cells.Proc. Natl Acad. Sci. USA103(43) , 15782–15787 (2006).
  • Kininis M , ChenBS, DiehlAGet al.: Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters.Mol. Cell Biol.27(14) , 5090–5104 (2007).
  • Takayama K , KaneshiroK, TsutsumiSet al.: Identification of novel androgen response genes in prostate cancer cells by coupling chromatin immunoprecipitation and genomic microarray analysis.Oncogene26(30) , 4453–4463 (2007).
  • Steger DJ , GrantGR, SchuppMet al.: Propagation of adipogenic signals through an epigenomic transition state.Genes Dev.24(10) , 1035–1044 (2010).
  • Meyer MB , GoetschPD, PikeJW: Genome-wide analysis of the VDR/RXR cistrome in osteoblast cells provides new mechanistic insight into the actions of the vitamin D hormone.J. Steroid Biochem. Mol. Biol.121(1–2) , 136–141 (2010).
  • Sims RJ 3rd, Reinberg D: Histone H3 Lys 4 methylation: caught in a bind? Genes Dev.20(20) , 2779–2786 (2006).
  • Trojer P , ReinbergD: Histone lysine demethylases and their impact on epigenetics.Cell125(2) , 213–217 (2006).
  • Klose RJ , ZhangY: Regulation of histone methylation by demethylimination and demethylation.Nat. Rev. Mol. Cell Biol.8(4) , 307–318 (2007).
  • Schneider J , ShilatifardA: Histone demethylation by hydroxylation: chemistry in action.ACS Chem. Biol.1(2) , 75–81 (2006).
  • Shi Y : Histone lysine demethylases: emerging roles in development, physiology and disease.Nat. Rev. Genet.8(11) , 829–833 (2007).
  • Rosenfeld MG , LunyakVV, GlassCK: Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response.Genes Dev.20(11) , 1405–1428 (2006).
  • Viswakarma N , JiaY, BaiLet al.: Coactivators in PPAR-regulated gene expression.PPAR Res. doi: 10.1155/2010/250126 (2010) (Epub ahead of print).
  • Barski A , CuddapahS, CuiKet al.: High-resolution profiling of histone methylations in the human genome.Cell129(4) , 823–837 (2007).
  • Bauer UM , DaujatS, NielsenSJ, NightingaleK, KouzaridesT: Methylation at arginine 17 of histone H3 is linked to gene activation.EMBO Rep.3(1) , 39–44 (2002).
  • Chen D , MaH, HongHet al.: Regulation of transcription by a protein methyltransferase.Science284(5423) , 2174–2177 (1999).
  • Ma H , BaumannCT, LiHet al.: Hormone-dependent, CARM1-directed, arginine-specific methylation of histone H3 on a steroid-regulated promoter.Curr. Biol.11(24) , 1981–1985 (2001).
  • Strahl BD , BriggsSD, BrameCJet al.: Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1.Curr. Biol.11(12) , 996–1000 (2001).
  • Wang H , HuangZQ, XiaLet al.: Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor.Science293(5531) , 853–857 (2001).
  • Lee TI , JennerRG, BoyerLAet al.: Control of developmental regulators by Polycomb in human embryonic stem cells.Cell125(2) , 301–313 (2006).
  • Boyer LA , PlathK, ZeitlingerJet al.: Polycomb complexes repress developmental regulators in murine embryonic stem cells.Nature441(7091) , 349–353 (2006).
  • Bannister AJ , ZegermanP, PartridgeJFet al.: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain.Nature410(6824) , 120–124 (2001).
  • Trojer P , ReinbergD: Facultative heterochromatin: is there a distinctive molecular signature?Mol. Cell.28(1) , 1–13 (2007).
  • Cheng AS , JinVX, FanMet al.: Combinatorial analysis of transcription factor partners reveals recruitment of c-MYC to estrogen receptor-a responsive promoters.Mol. Cell.21(3) , 393–404 (2006).
  • Lefterova MI , StegerDJ, ZhuoDet al.: Cell-specific determinants of peroxisome proliferator-activated receptor γ function in adipocytes and macrophages.Mol. Cell Biol.30(9) , 2078–2089 (2010).
  • Carroll JS , LiuXS, BrodskyASet al.: Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1.Cell122(1) , 33–43 (2005).
  • Wang Q , LiW, LiuXSet al.: A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth.Mol. Cell.27(3) , 380–392 (2007).
  • So AY , ChaivorapolC, BoltonEC, LiH, YamamotoKR: Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor.PLoS Genet.3(6) , e94 (2007).
  • Carroll JS , MeyerCA, SongJet al.: Genome-wide analysis of estrogen receptor binding sites.Nat. Genet.38(11) , 1289–1297 (2006).
  • Welboren WJ , van Driel MA, Janssen-Megens EM et al.: ChIP-Seq of ERα and RNA polymerase II defines genes differentially responding to ligands. EMBO J.28(10) , 1418–1428 (2009).
  • Lefterova MI , ZhangY, StegerDJet al.: PPARγ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale.Genes Dev.22(21) , 2941–2952 (2008).
  • Reddy TE , PauliF, SprouseROet al.: Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation.Genome Res.19(12) , 2163–2171 (2009).
  • Bannister AJ , SchneiderR, MyersFA, ThorneAW, Crane-RobinsonC, KouzaridesT: Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes.J. Biol. Chem.280(18) , 17732–17736 (2005).
  • Heintzman ND , StuartRK, HonGet al.: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome.Nat. Genet.39(3) , 311–318 (2007).
  • Roh TY , WeiG, FarrellCM, ZhaoK: Genome-wide prediction of conserved and nonconserved enhancers by histone acetylation patterns.Genome Res.17(1) , 74–81 (2007).
  • Kim S , YamazakiM, ZellaLAet al.: Multiple enhancer regions located at significant distances upstream of the transcriptional start site mediate RANKL gene expression in response to 1,25-dihydroxyvitamin D3.J. Steroid Biochem. Mol. Biol.103(3–5) , 430–434 (2007).
  • Ernst J , KellisM: Discovery and characterization of chromatin states for systematic annotation of the human genome.Nat. Biotechnol.28(8) , 817–825 (2010).
  • Perissi V , StaszewskiLM, McInerneyEMet al.: Molecular determinants of nuclear receptor-corepressor interaction.Genes Dev.13(24) , 3198–3208 (1999).
  • Hu X , LazarMA: The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors.Nature402(6757) , 93–96 (1999).
  • Glass CK , RosenfeldMG: The coregulator exchange in transcriptional functions of nuclear receptors.Genes Dev.14(2) , 121–141 (2000).
  • Perissi V , JepsenK, GlassCK, RosenfeldMG: Deconstructing repression: evolving models of co-repressor action.Nat. Rev. Genet.11(2) , 109–123 (2010).
  • Metivier R , PenotG, HubnerMRet al.: Estrogen receptor-α directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter.Cell115(6) , 751–763 (2003).
  • Kim MS , KondoT, TakadaIet al.: DNA demethylation in hormone-induced transcriptional derepression.Nature461(7266) , 1007–1012 (2009).
  • Metivier R , GallaisR, TiffocheCet al.: Cyclical DNA methylation of a transcriptionally active promoter.Nature452(7183) , 45–50 (2008).
  • Kangaspeska S , StrideB, MetivierRet al.: Transient cyclical methylation of promoter DNA.Nature452(7183) , 112–115 (2008).
  • Shang Y , HuX, DiRenzoJ, LazarMA, BrownM: Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription.Cell103(6) , 843–852 (2000).
  • Baek SH , OhgiKA, RoseDW, KooEH, GlassCK, RosenfeldMG: Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-κB and β-amyloid precursor protein.Cell110(1) , 55–67 (2002).
  • Cosma MP : Ordered recruitment: gene-specific mechanism of transcription activation.Mol. Cell.10(2) , 227–236 (2002).
  • Kioussi C , BriataP, BaekSHet al.: Identification of a Wnt/Dvl/β-Catenin – Pitx2 pathway mediating cell-type-specific proliferation during development.Cell111(5) , 673–685 (2002).
  • Reid G , HubnerMR, MetivierRet al.: Cyclic, proteasome-mediated turnover of unliganded and liganded ERα on responsive promoters is an integral feature of estrogen signaling.Mol. Cell.11(3) , 695–707 (2003).
  • An W , KimJ, RoederRG: Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53.Cell117(6) , 735–748 (2004).
  • Onate SA , TsaiSY, TsaiMJ, O‘MalleyBW: Sequence and characterization of a coactivator for the steroid hormone receptor superfamily.Science270(5240) , 1354–1357 (1995).
  • Xu J , LiQ: Review of the in vivo functions of the p160 steroid receptor coactivator family.Mol. Endocrinol.17(9) , 1681–1692 (2003).
  • Zhang H , YiX, SunXet al.: Differential gene regulation by the SRC family of coactivators.Genes Dev.18(14) , 1753–1765 (2004).
  • Zhu Y , QiC, CalandraC, RaoMS, ReddyJK: Cloning and identification of mouse steroid receptor coactivator-1 (mSRC-1), as a coactivator of peroxisome proliferator-activated receptor γ.Gene Expr.6(3) , 185–195 (1996).
  • Hong H , KohliK, TrivediA, JohnsonDL, StallcupMR: GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors.Proc. Natl Acad. Sci. USA93(10) , 4948–4952 (1996).
  • Li H , GomesPJ, ChenJD: RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2.Proc. Natl Acad. Sci. USA94(16) , 8479–8484 (1997).
  • Anzick SL , KononenJ, WalkerRLet al.: AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer.Science277(5328) , 965–968 (1997).
  • Yu S , ReddyJK: Transcription coactivators for peroxisome proliferator-activated receptors.Biochim. Biophys. Acta1771(8) , 936–951 (2007).
  • Xu J , WuRC, O‘MalleyBW: Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family.Nat. Rev. Cancer9(9) , 615–630 (2009).
  • Torchia J , RoseDW, InostrozaJet al.: The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function.Nature387(6634) , 677–684 (1997).
  • Kim JH , LiH, StallcupMR: CoCoA, a nuclear receptor coactivator which acts through an N-terminal activation domain of p160 coactivators.Mol. Cell.12(6) , 1537–1549 (2003).
  • Chen YH , KimJH, StallcupMR: GAC63, a GRIP1-dependent nuclear receptor coactivator.Mol. Cell Biol.25(14) , 5965–5972 (2005).
  • Dowell P , IshmaelJE, AvramD, PetersonVJ, NevrivyDJ, LeidM: p300 functions as a coactivator for the peroxisome proliferator-activated receptor α.J. Biol. Chem.272(52) , 33435–33443 (1997).
  • Waters L , YueB, VeverkaVet al.: Structural diversity in p160/CREB-binding protein coactivator complexes.J. Biol. Chem.281(21) , 14787–14795 (2006).
  • Polesskaya A , NaguibnevaI, DuquetA, BengalE, RobinP, Harel-BellanA: Interaction between acetylated MyoD and the bromodomain of CBP and/or p300.Mol. Cell Biol.21(16) , 5312–5320 (2001).
  • Smith CL , OnateSA, TsaiMJ, O‘MalleyBW: CREB binding protein acts synergistically with steroid receptor coactivator-1 to enhance steroid receptor-dependent transcription.Proc. Natl Acad. Sci. USA93(17) , 8884–8888 (1996).
  • Fu M , WangC, WangJ, ZafonteBT, LisantiMP, PestellRG: Acetylation in hormone signaling and the cell cycle.Cytokine Growth Factor Rev.13(3) , 259–276 (2002).
  • Lanz RB , BulynkoY, MalovannayaAet al.: Global characterization of transcriptional impact of the SRC-3 coregulator.Mol. Endocrinol.24(4) , 859–872 (2010).
  • Laganiere J , DebloisG, LefebvreC, BatailleAR, RobertF, GiguereV: From the cover: location analysis of estrogen receptor α target promoters reveals that FOXA1 defines a domain of the estrogen response.Proc. Natl Acad. Sci. USA102(33) , 11651–11656 (2005).
  • Garcia-Bassets I , KwonYS, TeleseFet al.: Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors.Cell128(3) , 505–518 (2007).
  • Matsuda H , PaulBD, ChoiCY, ShiYB: Contrasting effects of two alternative splicing forms of coactivator-associated arginine methyltransferase 1 on thyroid hormone receptor-mediated transcription in Xenopus laevis.Mol. Endocrinol.21(5) , 1082–1094 (2007).
  • Majumder S , LiuY, FordOH 3rd, Mohler JL, Whang YE: Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability. Prostate66(12) , 1292–1301 (2006).
  • Lee S , LeeJ, LeeSK, LeeJW: Activating signal cointegrator-2 is an essential adaptor to recruit histone H3 lysine 4 methyltransferases MLL3 and MLL4 to the liver X receptors.Mol. Endocrinol.22(6) , 1312–1319 (2008).
  • Shi Y , LanF, MatsonCet al.: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1.Cell119(7) , 941–953 (2004).
  • Metzger E , WissmannM, YinNet al.: LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription.Nature437(7057) , 436–439 (2005).
  • Wissmann M , YinN, MullerJMet al.: Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression.Nat. Cell Biol.9(3) , 347–353 (2007).
  • Nagy L , KaoHY, ChakravartiDet al.: Nuclear receptor repression mediated by a complex containing SMRT, mSin3A and histone deacetylase.Cell89(3) , 373–380 (1997).
  • Webb P , AndersonCM, ValentineCet al.: The nuclear receptor corepressor (N-CoR) contains three isoleucine motifs (I/LXXII) that serve as receptor interaction domains (IDs).Mol. Endocrinol.14(12) , 1976–1985 (2000).
  • Guenther MG , LaneWS, FischleW, VerdinE, LazarMA, ShiekhattarR: A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness.Genes Dev.14(9) , 1048–1057 (2000).
  • Li J , WangJ, NawazZ, LiuJM, QinJ, WongJ: Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3.EMBO J.19(16) , 4342–4350 (2000).
  • Yoon HG , ChanDW, HuangZQet al.: Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1.EMBO J.22(6) , 1336–1346 (2003).
  • Fischle W , DequiedtF, FillionM, HendzelMJ, VoelterW, VerdinE: Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo.J. Biol. Chem.276(38) , 35826–35835 (2001).
  • Fischle W , DequiedtF, HendzelMJet al.: Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR.Mol. Cell9(1) , 45–57 (2002).
  • Huang EY , ZhangJ, MiskaEA, GuentherMG, KouzaridesT, LazarMA: Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway.Genes Dev.14(1) , 45–54 (2000).
  • Jepsen K , RosenfeldMG: Biological roles and mechanistic actions of co-repressor complexes.J. Cell Sci.115(Pt 4) , 689–698 (2002).
  • Tong JK , HassigCA, SchnitzlerGR, KingstonRE, SchreiberSL: Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex.Nature395(6705) , 917–921 (1998).
  • Li J , LinQ, YoonHGet al.: Involvement of histone methylation and phosphorylation in regulation of transcription by thyroid hormone receptor.Mol. Cell Biol.22(16) , 5688–5697 (2002).
  • Takada I , MiharaM, SuzawaMet al.: A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-γ transactivation.Nat. Cell Biol.9(11) , 1273–1285 (2007).
  • Fernandes I , BastienY, WaiTet al.: Ligand-dependent nuclear receptor corepressor LCoR functions by histone deacetylase-dependent and -independent mechanisms.Mol. Cell.11(1) , 139–150 (2003).
  • Cavailles V , DauvoisS, L‘HorsetFet al.: Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor.EMBO J.14(15) , 3741–3751 (1995).
  • Delage-Mourroux R , MartiniPG, ChoiI, KraichelyDM, HoeksemaJ, KatzenellenbogenBS: Analysis of estrogen receptor interaction with a repressor of estrogen receptor activity (REA) and the regulation of estrogen receptor transcriptional activity by REA.J. Biol. Chem.275(46) , 35848–35856 (2000).
  • Epping MT , WangL, EdelMJ, CarleeL, HernandezM, BernardsR: The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling.Cell122(6) , 835–847 (2005).
  • Palijan A , FernandesI, BastienYet al.: Function of histone deacetylase 6 as a cofactor of nuclear receptor coregulator LCoR.J. Biol. Chem.284(44) , 30264–30274 (2009).
  • DiRenzo J , SoderstromM, KurokawaRet al.: Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors.Mol. Cell Biol.17(4) , 2166–2176 (1997).
  • Picard F , GehinM, AnnicotteJet al.: SRC-1 and TIF2 control energy balance between white and brown adipose tissues.Cell111(7) , 931–941 (2002).
  • Xu J , LiaoL, NingG, Yoshida-KomiyaH, DengC, O‘MalleyBW: The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development.Proc. Natl Acad. Sci. USA97(12) , 6379–6384 (2000).
  • Louet JF , CosteA, AmazitLet al.: Oncogenic steroid receptor coactivator-3 is a key regulator of the white adipogenic program.Proc. Natl Acad. Sci. USA103(47) , 17868–17873 (2006).
  • Louet JF , O‘MalleyBW: Coregulators in adipogenesis: what could we learn from the SRC (p160) coactivator family?Cell Cycle6(20) , 2448–2452 (2007).
  • Gehin M , MarkM, DennefeldC, DierichA, GronemeyerH, ChambonP: The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP.Mol. Cell Biol.22(16) , 5923–5937 (2002).
  • Cohen RN , PutneyA, WondisfordFE, HollenbergAN: The nuclear corepressors recognize distinct nuclear receptor complexes.Mol. Endocrinol.14(6) , 900–914 (2000).
  • Cohen RN , BrzostekS, KimB, ChorevM, WondisfordFE, HollenbergAN: The specificity of interactions between nuclear hormone receptors and corepressors is mediated by distinct amino acid sequences within the interacting domains.Mol. Endocrinol.15(7) , 1049–1061 (2001).
  • Faist F , ShortS, KnealeGG, SharpeCR: Alternative splicing determines the interaction of SMRT isoforms with nuclear receptor-DNA complexes.Biosci. Rep.29(3) , 143–149 (2009).
  • Yamane K , ToumazouC, TsukadaYet al.: JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor.Cell125(3) , 483–495 (2006).
  • Ghisletti S , HuangW, JepsenKet al.: Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways.Genes Dev.23(6) , 681–693 (2009).
  • So AY , CooperSB, FeldmanBJ, ManuchehriM, YamamotoKR: Conservation analysis predicts in vivo occupancy of glucocorticoid receptor-binding sequences at glucocorticoid-induced genes.Proc. Natl Acad. Sci. USA105(15) , 5745–5749 (2008).
  • Lydon JP , O‘MalleyBW: Minireview: steroid receptor coactivator-3: a multifarious coregulator in mammary gland metastasis.Endocrinology152(1) , 19–25 (2010).
  • Alenghat T , MeyersK, MullicanSEet al.: Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology.Nature456(7224) , 997–1000 (2008).
  • Inagaki T , TachibanaM, MagooriKet al.: Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice.Genes Cells14(8) , 991–1001 (2009).
  • Musri MM , CarmonaMC, HanzuFA, KalimanP, GomisR, ParrizasM: Histone demethylase LSD1 regulates adipogenesis.J. Biol. Chem.285(39) , 30034–30041 (2010).
  • Daigo K , KawamuraT, OhtaYet al.: Proteomic analysis of native hepatocyte nuclear factor-4{α} (HNF4{α}) isoforms, phosphorylation status, and interactive cofactors.J. Biol. Chem.286(1) , 674–686 (2010).
  • Malik S , RoederRG: The metazoan mediator co-activator complex as an integrative hub for transcriptional regulation.Nat. Rev. Genet.11(11) , 761–772 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.