377
Views
0
CrossRef citations to date
0
Altmetric
Review

REST: Transcriptional and Epigenetic Regulator

Pages 47-58 | Published online: 17 Feb 2011

Bibliography

  • Cai J , WeissML, RaoMS: In search of ‘stemness‘.Exp. Hematol.32(7) , 585–598 (2004).
  • Spivakov M , FisherAG: Epigenetic signatures of stem-cell identity.Nat. Rev. Genet.8(4) , 263–271 (2007).
  • Bird A : Perceptions of epigenetics.Nature447(7143) , 396–408 (2007).
  • Bernstein BE , MeissnerA, LanderES: The mammalian epigenome.Cell128(4) , 669–681 (2007).
  • Mehler MF : Epigenetic principles and mechanisms underlying nervous system functions in health and disease.Prog. Neurobiol.86(4) , 305–341 (2008).
  • Kouzarides T : Chromatin modifications and their function.Cell128(4) , 693–705 (2007).
  • Wutz A : Xist function: bridging chromatin and stem cells.Trends Genet.23(9) , 457–464 (2007).
  • Talbert PB , HenikoffS: Histone variants – ancient wrap artists of the epigenome.Nat. Rev. Mol. Cell. Biol.11(4) , 264–275 (2010).
  • Bernstein BE , KamalM, Lindblad-TohKet al.: Genomic maps and comparative analysis of histone modifications in human and mouse.Cell120(2) , 169–181 (2005).
  • Meissner A , MikkelsenTS, GuHet al.: Genome-scale DNA methylation maps of pluripotent and differentiated cells.Nature454(7205) , 766–770 (2008).
  • Mikkelsen TS , KuM, JaffeDBet al.: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells.Nature448(7153) , 553–560 (2007).
  • Bernstein BE , MikkelsenTS, XieXet al.: A bivalent chromatin structure marks key developmental genes in embryonic stem cells.Cell125(2) , 315–326 (2006).
  • Azuara V , PerryP, SauerSet al.: Chromatin signatures of pluripotent cell lines.Nat. Cell Biol.29 (2006).
  • Chong JA , Tapia-RamirezJ, KimSet al.: REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons.Cell80 , 949–957 (1995).
  • Schoenherr CJ , AndersonDJ: The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes.Science267(5202) , 1360–1363 (1995).
  • Schoenherr CJ , AndersonDJ: Silencing is golden: negative regulation in the control of neuronal gene transcription.Curr. Opin. Neurobiol.5(5) , 566–571 (1995).
  • Schoenherr CJ , PaquetteAJ, AndersonDJ: Identification of potential target genes for the neuron-restrictive silencer factor.Proc. Natl Acad. Sci. USA93(18) , 9881–9886 (1996).
  • Sun YM , GreenwayDJ, JohnsonRet al.: Distinct rrofiles of REST interactions with its target genes at different stages of neuronal development.Mol. Biol. Cell16(12) , 5630–5638 (2005).
  • Ballas N , GrunseichC, LuDD, SpehJC, MandelG: REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis.Cell121(4) , 645–657 (2005).
  • Ballas N , MandelG: The many faces of REST oversee epigenetic programming of neuronal genes.Curr. Opin. Neurobiol.15(5) , 500–506 (2005).
  • Ooi L , WoodIC: Chromatin crosstalk in development and disease: lessons from REST.Nat. Rev. Genet.8(7) , 544–554 (2007).
  • Chen ZF , PaquetteAJ, AndersonDJ: NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis.Nat. Genet.20(2) , 136–142 (1998).
  • Buckley NJ , JohnsonR, ZuccatoC, BithellA, CattaneoE: The role of REST in transcriptional and epigenetic dysregulation in Huntington‘s disease.Neurobiol. Dis.39(1) , 28–39 (2010).
  • Johnson R , BuckleyNJ: Gene dysregulation in Huntington‘s disease: REST, microRNAs and beyond.Neuromolecular Med.11(3) , 183–199 (2009).
  • Coulson JM : Transcriptional regulation: cancer, neurons and the REST.Curr. Biol.15(17) , R665–R668 (2005).
  • Kraner SD , ChongJA, TsayHJ, MandelG: Silencing the type II sodium channel gene: a model for neural-specific gene regulation.Neuron9(1) , 37–44 (1992).
  • Mori N , SchoenherrC, VandenberghDJ, AndersonDJ: A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells.Neuron9(1) , 45–54 (1992).
  • Grimes JA , NielsenSJ, BattaglioliEet al.: The co-repressor mSin3A is a functional component of the REST–CoREST repressor complex.J. Biol. Chem.275(13) , 9461–9467 (2000).
  • Huang Y , MyersSJ, DingledineR: Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes.Nat. Neurosci.2(10) , 867–872 (1999).
  • Andres ME , BurgerC, Peral-RubioMJet al.: CoREST: a functional corepressor required for regulation of neural-specific gene expression.Proc. Natl Acad. Sci. USA96(17) , 9873–9878 (1999).
  • Shi Y , LanF, MatsonC, MulliganPet al.: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1.Cell119(7) , 941–953 (2004).
  • Roopra A , QaziR, SchoenikeB, DaleyTJ, MorrisonJF: Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes.Mol. Cell14(6) , 727–738 (2004).
  • Battaglioli E , AndresME, RoseDWet al.: REST repression of neuronal genes requires components of the hSWI.SNF complex.J. Biol. Chem.277(43) , 41038–41045 (2002).
  • Ooi L , BelyaevND, MiyakeK, WoodIC, BuckleyNJ: BRG1 chromatin remodeling activity is required for efficient chromatin binding by repressor element 1-silencing transcription factor (REST) and facilitates REST-mediated repression.J. Biol. Chem.281(51) , 38974–38980 (2006).
  • Hakimi MA , BocharDA, ChenowethJ, LaneWS, MandelG, ShiekhattarR: A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes.Proc. Natl Acad. Sci. USA99(11) , 7420–7425 (2002).
  • Garriga-Canut M , SchoenikeB, QaziRet al.: 2-deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure.Nat. Neurosci.9(11) , 1382–1387 (2006).
  • Lunyak VV , BurgessR, PrefontaineGGet al.: Corepressor-dependent silencing of chromosomal regions encoding neuronal genes.Science298(5599) , 1747–1752 (2002).
  • Amir RE , Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY: Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet.23(2) , 185–188 (1999).
  • Tahiliani M , MeiP, FangRet al.: The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation.Nature447(7144) , 601–605 (2007).
  • Greenway DJ , StreetM, JeffriesA, BuckleyNJ: RE1 silencing transcription factor maintains a repressive chromatin environment in embryonic hippocampal neural stem cells.Stem Cells25(2) , 354–363 (2007).
  • Palm K , BelluardoN, MetsisM, TimmuskT: Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene.J. Neurosci.18(4) , 1280–1296 (1998).
  • Bruce AW , DonaldsonIJ, WoodICet al.: Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes.Proc. Natl Acad. Sci. USA101(28) , 10458–10463 (2004).
  • Bruce AW , Lopez-ContrerasAJ, FlicekPet al.: Functional diversity for REST (NRSF) is defined by in vivo binding affinity hierarchies at the DNA sequence level.Genome Res.19(6) , 994–1005 (2009).
  • Johnson DS , MortazaviA, MyersRM, WoldB: Genome-wide mapping of in vivo protein-DNA interactions.Science316(5830) , 1497–1502 (2007).
  • Johnson R , TehCH, KunarsoGet al.: REST regulates distinct transcriptional networks in embryonic and neural stem cells.PLoS Biol.6(10) , e256 (2008).
  • Otto SJ , McCorkleSR, HoverJet al.: A new binding motif for the transcriptional repressor REST uncovers large gene networks devoted to neuronal functions.J. Neurosci.27(25) , 6729–6739 (2007).
  • Mortazavi A , Leeper Thompson EC, Garcia ST, Myers RM, Wold B: Comparative genomics modeling of the NRSF/REST repressor network: from single conserved sites to genome-wide repertoire. Genome Res.16(10) , 1208–1221 (2006).
  • Johnson R , GamblinRJ, OoiLet al.: Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication.Nucleic Acids Res.34(14) , 3862–3877 (2006).
  • Wu J , XieX: Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression.Genome Biol.7(9) , R85 (2006).
  • Abrajano JJ , QureshiIA, GokhanS, ZhengD, BergmanA, MehlerMF: REST and CoREST modulate neuronal subtype specification, maturation and maintenance.PLoS ONE4(12) , e7936 (2009).
  • Abrajano JJ , QureshiIA, GokhanS, ZhengD, BergmanA, MehlerMF: Differential deployment of REST and CoREST promotes glial subtype specification and oligodendrocyte lineage maturation.PLoS ONE4(11) , e7665 (2009).
  • Kohyama J , SanosakaT, TokunagaAet al.: BMP-induced REST regulates the establishment and maintenance of astrocytic identity.J. Cell Biol.189(1) , 159–170 (2010).
  • Chen X , XuH, YuanPet al.: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells.Cell133(6) , 1106–1117 (2008).
  • Impey S , McCorkleSR, Cha-MolstadHet al.: Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions.Cell119(7) , 1041–1054 (2004).
  • Fujiwara T , O‘GeenH, KelesSet al.: Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy.Mol. Cell36(4) , 667–681 (2009).
  • Costantini M , Di Filippo M, Bernardi G: Extrapolating ENCODE data to the whole human genome. Gene419(1–2) , 66–69 (2008).
  • Johnson R , ZuccatoC, BelyaevND, GuestDJ, CattaneoE, BuckleyNJ: A microRNA-based gene dysregulation pathway in Huntington‘s disease.Neurobiol. Dis.29(3) , 438–445 (2008).
  • Conaco C , OttoS, HanJJ, MandelG: Reciprocal actions of REST and a microRNA promote neuronal identity.Proc. Natl Acad. Sci. USA103(7) , 2422–2427 (2006).
  • Johnson R , TehCH, JiaHet al.: Regulation of neural macroRNAs by the transcriptional repressor REST.RNA15(1) , 85–96 (2009).
  • Lim LP , LauNC, Garrett-EngelePet al.: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.Nature433(7027) , 769–773 (2005).
  • Mehler MF , MattickJS: Non-coding RNAs in the nervous system.J. Physiol.575(Pt 2) , 333–341 (2006).
  • Cao X , YeoG, MuotriAR, KuwabaraT, GageFH: Noncoding RNAs in the mammalian central nervous system.Annu. Rev. Neurosci.29 , 77–103 (2006).
  • Yoo AS , StaahlBT, ChenL, CrabtreeGR: MicroRNA-mediated switching of chromatin-remodeling complexes in neural development.Nature460(7255) , 642–646 (2009).
  • Roopra A , SharlingL, WoodICet al.: Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3-histone deacetylase complex.Mol. Cell Biol.20(6) , 2147–2157 (2000).
  • Kuratomi S , KuratomiA, KuwaharaKet al.: NRSF regulates the developmental and hypertrophic changes of HCN4 transcription in rat cardiac myocytes.Biochem. Biophys. Res. Commun.353(1) , 67–73 (2007).
  • Kuwahara K , SaitoY, OgawaEet al.: The neuron-restrictive silencer element-neuron-restrictive silencer factor system regulates basal and endothelin 1-inducible atrial natriuretic peptide gene expression in nentricular myocytes.Mol. Cell Biol.21(6) , 2085–2097 (2001).
  • Kuwahara K , SaitoY, TakanoMet al.: NRSF regulates the fetal cardiac gene program and maintains normal cardiac structure and function.EMBO J.22(23) , 6310–6321 (2003).
  • Nakagawa Y , KuwaharaK, HaradaMet al.: Class II HDACs mediate CaMK-dependent signaling to NRSF in ventricular myocytes.J. Mol. Cell. Cardiol.41(6) , 1010–1022 (2006).
  • Bingham AJ , OoiL, KozeraL, WhiteE, WoodIC: The repressor element 1-silencing transcription factor regulates heart-specific gene expression using multiple chromatin-modifying complexes.Mol. Cell. Biol.27(11) , 4082–4092 (2007).
  • Zheng D , ZhaoK, MehlerMF: Profiling RE1/REST-mediated histone modifications in the human genome.Genome Biol.10(1) , R9 (2009).
  • Buckley NJ , JohnsonR, SunYM, StantonLW: Is REST a regulator of pluripotency?.Nature457(7233) , E5–E6; discussion E7 (2009).
  • Jorgensen HF , ChenZF, MerkenschlagerM, FisherAG: Is REST required for ESC pluripotency?.Nature457(7233) , E4–E5; discussion E7 (2009).
  • Jorgensen HF , FisherAG: Can controversies be put to REST?.Nature467(7311) , E3–E4; discussion E5 (2010).
  • Singh SK , KagalwalaMN, Parker-ThornburgJ, AdamsH, MajumderS: REST maintains self-renewal and pluripotency of embryonic stem cells.Nature453(7192) , 223–227 (2008).
  • Yamada Y , AokiH, KunisadaT, HaraA: REST promotes the early differentiation of mouse ESCs but is not required for their maintenance.Cell Stem Cell6(1) , 10–15 (2010).
  • Sun YM , CooperM, FinchSet al.: Rest-mediated regulation of extracellular matrix is crucial for neural development.PLoS ONE3(11) , e3656 (2008).
  • A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington‘s disease chromosomes. The Huntington‘s Disease Collaborative Research Group. Cell72(6) , 971–983 (1993).
  • Zuccato C , BelyaevN, ConfortiPet al.: Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington‘s disease.J. Neurosci.27(26) , 6972–6983 (2007).
  • Zuccato C , TartariM, CrottiAet al.: Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes.Nat. Genet.35(1) , 76–83 (2003).
  • Qiu Z , NorflusF, SinghBet al.: Sp1 is up-regulated in cellular and transgenic models of Huntington disease, and its reduction is neuroprotective.J. Biol. Chem.281(24) , 16672–16680 (2006).
  • Steffan JS , KazantsevA, Spasic-BoskovicOet al.: The Huntington‘s disease protein interacts with p53 and CREB-binding protein and represses transcription.Proc. Natl Acad. Sci. USA97(12) , 6763–6768 (2000).
  • Dunah AW , JeongH, GriffinAet al.: Sp1 and TAFII130 transcriptional activity disrupted in early Huntington‘s disease.Science296(5576) , 2238–2243 (2002).
  • Hodges A , StrandAD, AragakiAKet al.: Regional and cellular gene expression changes in human Huntington‘s disease brain.Hum. Mol. Genet.15(6) , 965–977 (2006).
  • Packer AN , XingY, HarperSQ, JonesL, DavidsonBL: The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington‘s disease.J. Neurosci.28(53) , 14341–14346 (2008).
  • Ferrante RJ , KubilusJK, LeeJet al.: Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington‘s disease mice.J. Neurosci.23(28) , 9418–9427 (2003).
  • Ferrante RJ , RyuH, KubilusJKet al.: Chemotherapy for the brain: the antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington‘s disease.J. Neurosci.24(46) , 10335–10342 (2004).
  • Bithell A , JohnsonR, BuckleyNJ: Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington‘s disease.Biochem. Soc. Trans.37(Pt 6) , 1270–1275 (2009).
  • Soldati C , BithellA, ConfortiP, CattaneoE, BuckleyNJ: Rescue of gene expression by modified REST decoy oligonucleotides in a cellular model of Huntington‘s disease.J. Neurochem.116(3) , 415–425 (2011).
  • Zuccato C , CattaneoE: Brain-derived neurotrophic factor in neurodegenerative diseases.Nat. Rev. Neurol.5(6) , 311–322 (2009).
  • Sadri-Vakili G , BouzouB, BennCLet al.: Histones associated with downregulated genes are hypo-acetylated in Huntington‘s disease models.Hum. Mol. Genet.16(11) , 1293–1306 (2007).
  • Gardian G , BrowneSE, ChoiDKet al.: Neuroprotective effects of phenylbutyrate in the N171–82Q transgenic mouse model of Huntington‘s disease.J. Biol. Chem.280(1) , 556–563 (2005).
  • Hockly E , RichonVM, WoodmanBet al.: Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington‘s disease.Proc. Natl Acad. Sci. USA100(4) , 2041–2046 (2003).
  • Calderone A , JoverT, NohKMet al.: Ischemic insults derepress the gene silencer REST in neurons destined to die.J. Neurosci.23(6) , 2112–2121 (2003).
  • Mucha M , OoiL, LinleyJEet al.: Transcriptional control of KCNQ channel genes and the regulation of neuronal excitability.J. Neurosci.30(40) , 13235–13245 (2010).
  • Abuhatzira L , MakedonskiK, KaufmanY, RazinA, ShemerR: MeCP2 deficiency in the brain decreases BDNF levels by REST/CoREST-mediated repression and increases TRKB production.Epigenetics2(4) , 214–222 (2007).
  • Formisano L , NohKM, MiyawakiT, MashikoT, BennettMV, ZukinRS: Ischemic insults promote epigenetic reprogramming of m opioid receptor expression in hippocampal neurons.Proc. Natl Acad. Sci. USA104(10) , 4170–4175 (2007).
  • Huang Y , DohertyJJ, DingledineR: Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus.J. Neurosci.22(19) , 8422–8428 (2002).
  • Anderson DJ : Stem cells and transcription factors in the development of the mammalian neural crest.FASEB J.8(10) , 707–713 (1994).
  • Adli M , ZhuJ, BernsteinBE: Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors.Nat. Methods7(8) , 615–618 (2010).
  • Cloonan N , ForrestAR, KolleGet al.: Stem cell transcriptome profiling via massive-scale mRNA sequencing.Nat. Methods5(7) , 613–619 (2008).
  • Cloonan N , GrimmondSM: Transcriptome content and dynamics at single-nucleotide resolution.Genome Biol.9(9) , 234 (2008).
  • Hsieh J , EischAJ: Epigenetics, hippocampal neurogenesis, and neuropsychiatric disorders: unraveling the genome to understand the mind.Neurobiol. Dis.39(1) , 73–84 (2010).
  • Portela A , EstellerM: Epigenetic modifications and human disease.Nat. Biotechnol.28(10) , 1057–1068 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.