230
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Discordance at Imprinting Control Regions in Twins

&
Pages 295-306 | Published online: 30 Jun 2011

Bibliography

  • Bruder CE , PiotrowskiA, GijsbersAAet al.: Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles.Am. J. Hum. Genet.82(3) , 763–771 (2008).
  • Baranzini SE , MudgeJ, van Velkinburgh JC et al.: Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature464(7293) , 1351–1356 (2010).
  • Ono S , ImamuraA, TasakiSet al.: Failure to confirm CNVs as of aetiological significance in twin pairs discordant for schizophrenia.Twin Res. Hum. Genet.13(5) , 455–460 (2010).
  • Petronis A , IIG, KanPet al.: Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance?.Schizophr. Bull.29(1) , 169–178 (2003).
  • Bjornsson HT , SigurdssonMI, FallinMDet al.: Intra-individual change over time in DNA methylation with familial clustering.JAMA299(24) , 2877–2883 (2008).
  • Gluckman PD , LillycropKA, VickersMHet al.: Metabolic plasticity during mammalian development is directionally dependent on early nutritional status.Proc. Natl Acad. Sci. USA104(31) , 12796–12800 (2007).
  • Dolinoy DC , WeidmanJR, WaterlandRA, JirtleRL: Maternal genistein alters coat color and protects avy mouse offspring from obesity by modifying the fetal epigenome.Environ. Health Perspect.114(4) , 567–572 (2006).
  • Waterland RA , TravisanoM, TahilianiKG: Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female.FASEB J.21(12) , 3380–3385 (2007).
  • Bogdarina I , WelhamS, KingPJ, BurnsSP, ClarkAJ: Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension.Circ. Res.100(4) , 520–526 (2007).
  • Vickers MH , GluckmanPD, CovenyAHet al.: Neonatal leptin treatment reverses developmental programming.Endocrinology146(10) , 4211–4216 (2005).
  • Feinberg AP : Phenotypic plasticity and the epigenetics of human disease.Nature447(7143) , 433–440 (2007).
  • Heijmans BT , TobiEW, SteinADet al.: Persistent epigenetic differences associated with prenatal exposure to famine in humans.Proc. Natl Acad. Sci. USA105(44) , 17046–17049 (2008).
  • Kaneda A , FeinbergAP: Loss of imprinting of IGF2: A common epigenetic modifier of intestinal tumor risk.Cancer Res.65(24) , 11236–11240 (2005).
  • Feinberg AP : A genetic approach to cancer epigenetics.Cold Spring Harb. Symp. Quant. Biol.70 , 335–341 (2005).
  • Feinberg AP , OhlssonR, HenikoffS: The epigenetic progenitor origin of human cancer.Nat. Rev. Genet.7(1) , 21–33 (2006).
  • Feinberg AP : Epigenomics reveals a functional genome anatomy and a new approach to common disease.Nat. Biotechnol.28(10) , 1049–1052 (2010).
  • Jiang YH , BresslerJ, Beaud et al.: Epigenetics and human disease. Annu. Rev. Genomics Hum. Genet.5 , 479–510 (2004).
  • Murphy SK , JirtleRL: Imprinting evolution and the price of silence.Bioessays25(6) , 577–588 (2003).
  • Morison IM , RamsayJP, SpencerHG: A census of mammalian imprinting.Trends Genet.21(8) , 457–465 (2005).
  • Temple IK , ShieldJP: Transient neonatal diabetes, a disorder of imprinting.J. Med. Genet.39(12) , 872–875 (2002).
  • Szabo PE , HubnerK, ScholerH, MannJR: Allele-specific expression of imprinted genes in mouse migratory primordial germ cells.Mech. Dev.115(1–2) , 157–160 (2002).
  • Sato S , YoshimizuT, SatoE, MatsuiY: Erasure of methylation imprinting of Igf2r during mouse primordial germ-cell development.Mol. Reprod. Dev.65(1) , 41–50 (2003).
  • Li JY , Lees-MurdockDJ, XuGL, WalshCP: Timing of establishment of paternal methylation imprints in the mouse.Genomics84(6) , 952–960 (2004).
  • Davis TL , YangGJ, McCarreyJR, BartolomeiMS: The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development.Hum. Mol. Genet.9(19) , 2885–2894 (2000).
  • Bao S , ObataY, CarrollJ, DomekiI, KonoT: Epigenetic modifications necessary for normal development are established during oocyte growth in mice.Biol. Reprod.62(3) , 616–621 (2000).
  • Obata Y , KonoT: Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth.J. Biol. Chem.277(7) , 5285–5289 (2002).
  • Bourc‘his D , XuGL, LinCS, BollmanB, BestorTH: Dnmt3L and the establishment of maternal genomic imprints.Science294(5551) , 2536–2539 (2001).
  • Li E , BeardC, JaenischR: Role for DNA methylation in genomic imprinting.Nature366(6453) , 362–365 (1993).
  • Choufani S , ShumanC, WeksbergR: Beckwith–Wiedemann syndrome.Am J. Med. Genet. C Semin. Med. Genet.154C(3) , 343–354 (2010).
  • Eggermann T : Russell–Silver syndrome.Am J. Med. Genet. C Semin. Med. Genet.154(3) , 355–364 (2010).
  • Weksberg R , ShumanC, CaluseriuOet al.: Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith–Wiedemann syndrome.Hum. Mol. Genet.11(11) , 1317–1325 (2002).
  • Sparago A , CerratoF, VernucciM, FerreroGB, SilengoMC, RiccioA: Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith–Wiedemann syndrome.Nat. Genet.36(9) , 958–960 (2004).
  • Bliek J , AldersM, MaasSMet al.: Lessons from BWS twins: Complex maternal and paternal hypomethylation and a common source of haematopoietic stem cells.Eur. J. Hum. Genet.17(12) , 1625–1634 (2009).
  • Cooper WN , LuhariaA, EvansGAet al.: Molecular subtypes and phenotypic expression of Beckwith–Wiedemann syndrome.Eur. J. Hum. Genet.13(9) , 1025–1032 (2005).
  • Weksberg R , NishikawaJ, CaluseriuOet al.: Tumor development in the Beckwith–Wiedemann syndrome is associated with a variety of constitutional molecular 11p15 alterations including imprinting defects of KCNQ1OT1.Hum. Mol. Genet.10(26) , 2989–3000 (2001).
  • Clayton-Smith J , ReadAP, DonnaiD: Monozygotic twinning and Wiedemann–Beckwith syndrome.Am. J. Med. Genet.42(4) , 633–637 (1992).
  • Smith AC , RubinT, ShumanCet al.: New chromosome 11p15 epigenotypes identified in male monozygotic twins with Beckwith–Wiedemann syndrome.Cytogenet. Genome Res.113(1–4) , 313–317 (2006).
  • Tierling S , SourenNY, ReitherSet al.: DNA methylation studies on imprinted loci in a male monozygotic twin pair discordant for Beckwith–Wiedemann syndrome.Clin. Genet.79(6) , 546–553 (2011).
  • Rossignol S , SteunouV, ChalasCet al.: The epigenetic imprinting defect of patients with Beckwith–Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region.J. Med. Genet.43(12) , 902–907 (2006).
  • Nyhan WL , SakatiNO: Genetic and Malformation Syndromes in Clinical Medicine Yarbook Medical Publisher, IL, USA, 298–300 (1976).
  • Samn M , LewisK, BlumbergB: Monozygotic twins discordant for the Russell–Silver syndrome.Am J. Med. Genet.37(4) , 543–545 (1990).
  • Bailey W , PopovichB, JonesKL: Monozygotic twins discordant for the Russell–Silver syndrome.Am J. Med. Genet.58(2) , 101–105 (1995).
  • Sagot P , DavidA, TalmantC, PascalO, WinerN, BoogG: Russell–Silver syndrome: an explanation for discordant growth in monozygotic twins.Fetal Diagn. Ther.11(1) , 72–78 (1996).
  • Yamazawa K , KagamiM, FukamiM, MatsubaraK, OgataT: Monozygotic female twins discordant for Silver–Russell syndrome and hypomethylation of the H19-DMR.J. Hum. Genet.53(10) , 950–955 (2008).
  • Gicquel C , RossignolS, CabrolSet al.: Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver–Russell syndrome.Nat. Genet.37(9) , 1003–1007 (2005).
  • Begemann M , SpenglerS, KanberDet al.: Silver–Russell patients showing a broad range of ICR1 and ICR2 hypomethylation in different tissues.Clin. Genet. doi: 10.1111/j.1399–0004.2010.01514.x. (2010) (Epub ahead of print).
  • Rimoin DL : The silver syndrome in twins. In: The Clinical Delineation of Birth Defects. Part II: Malformation Syndromes. Bergsma D, McKusick VA, Hall JG, Scott CI, Jackson C (Eds). National Foundation March of Dimes, NY, USA, 183–187 (1969).
  • Kant SG , van der Weij AM, Oostdijk W et al.: Monozygous triplets discordant for transient neonatal diabetes mellitus and for imprinting of the TNDM differentially methylated region. Hum. Genet.117(4) , 398–401 (2005).
  • Laborie LB , MackayDJ, TempleIK, MolvenA, SovikO, NjolstadPR: DNA hypomethylation, transient neonatal diabetes, and prune belly sequence in one of two identical twins.Eur. J. Pediatr.169(2) , 207–213 (2010).
  • Hall JG : Twins and twinning.Am. J. Med. Gen.61(3) , 202–204 (1996).
  • Hall JG , Lopez-RangelE: Embryologic development and monozygotic twinning.Acta Genet. Med. Gemellol. (Roma)45(1–2) , 53–57 (1996).
  • Orstavik RE , TommerupN, EiklidK, OrstavikKH: Non-random X chromosome inactivation in an affected twin in a monozygotic twin pair discordant for Wiedemann–Beckwith syndrome.Am. J. Med. Genet.56(2) , 210–214 (1995).
  • Olney AH , BuehlerBA, WaziriM: Wiedemann–Beckwith syndrome in apparently discordant monozygotic twins.Am. J. Med. Genet.29(3) , 491–499 (1988).
  • Azzi S , RossignolS, SteunouVet al.: Multilocus methylation analysis in a large cohort of 11p15-related foetal growth disorders (Russell–Silver and Beckwith–Wiedemann syndromes) reveals simultaneous loss of methylation at paternal and maternal imprinted loci.Hum. Mol. Genet.18(24) , 4724–4733 (2009).
  • Schneider E , PliushchG, El Hajj N et al.: Spatial, temporal and interindividual epigenetic variation of functionally important DNA methylation patterns. Nucleic Acids Res.38(12) , 3880–3890 (2010).
  • Heijmans BT , KremerD, TobiEW, BoomsmaDI, SlagboomPE: Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus.Hum. Mol. Genet.16(5) , 547–554 (2007).
  • Talens RP , BoomsmaDI, TobiEWet al.: Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology.FASEB J.24(9) , 3135–3144 (2010).
  • Ollikainen M , SmithKR, JooEJet al.: DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome.Hum. Mol. Genet.19(21) , 4176–4188 (2010).
  • MacGillivray I : Epidemiology of twin pregnancy.Semin. Perinatol.10(1) , 4–8 (1986).
  • Gaston V , Le Bouc Y, Soupre V et al.: Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith–Wiedemann syndrome. Eur. J. Hum. Genet.9(6) , 409–418 (2001).
  • Mackay DJ , TempleIK: Transient neonatal diabetes mellitus Type 1.Am J. Med. Genet. C Semin. Med. Genet.154C(3) , 335–342 (2010).
  • Bestor TH : Imprinting errors and developmental asymmetry.Philos. Trans. R. Soc. Lond. B Biol. Sci.358(1436) , 1411–1415 (2003).
  • Junien C : Beckwith–Wiedemann syndrome, tumourigenesis and imprinting.Curr. Opin. Genet. Dev.2(3) , 431–438 (1992).
  • Lubinsky MS , HallJG. Genomic imprinting, monozygous twinning, and X inactivation. Lancet337(8752) , 1288 (1991).
  • Bliek J , VerdeG, CallawayJet al.: Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith–Wiedemann syndrome.Eur. J. Hum. Genet.17(5) , 611–619 (2009).
  • Lim D , BowdinSC, TeeLet al.: Clinical and molecular genetic features of Beckwith–Wiedemann syndrome associated with assisted reproductive technologies.Hum. Reprod.24(3) , 741–747 (2009).
  • Turner CL , MackayDM, CallawayJLet al.: Methylation analysis of 79 patients with growth restriction reveals novel patterns of methylation change at imprinted loci.Eur. J. Hum. Genet.18(6) , 648–655 (2010).
  • Mackay DJ , CallawayJL, MarksSMet al.: Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57.Nat. Genet.40(8) , 949–951 (2008).
  • Li X , ItoM, ZhouFet al.: A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints.Dev. Cell15(4) , 547–557 (2008).
  • Amor DJ , HallidayJ: A review of known imprinting syndromes and their association with assisted reproduction technologies.Hum. Reprod.23(12) , 2826–2834 (2008).
  • Odom LN , SegarsJ: Imprinting disorders and assisted reproductive technology.Curr. Opin. Endocrinol. Diabetes Obes.17(6) , 517–522 (2010).
  • Edwards RG , MettlerL, WaltersDE: Identical twins and in vitro fertilization.J. In Vitro Fert. Embryo Transf.3(2) , 114–117 (1986).
  • Blickstein I , JonesC, KeithLG: Zygotic-splitting rates after single-embryo transfers in in vitro fertilization.N. Engl. J. Med.348(23) , 2366–2367 (2003).
  • Blickstein I , VerhoevenHC, KeithLG: Zygotic splitting after assisted reproduction.N. Engl. J. Med.340(9) , 738–739 (1999).
  • Sills ES , TuckerMJ, PalermoGD: Assisted reproductive technologies and monozygous twins: Implications for future study and clinical practice.Twin Res.3(4) , 217–223 (2000).
  • Alikani M , CekleniakNA, WaltersE, CohenJ: Monozygotic twinning following assisted conception: an analysis of 81 consecutive cases.Hum. Reprod.18(9) , 1937–1943 (2003).
  • Maher ER , BruetonLA, BowdinSCet al.: Beckwith–Wiedemann syndrome and assisted reproduction technology (ART).J. Med. Genet.40(1) , 62–64 (2003).
  • DeBaun MR , NiemitzEL, FeinbergAP: Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19.Am. J. Hum. Genet.72(1) , 156–160 (2003).
  • Gicquel C , GastonV, MandelbaumJ, SiffroiJP, FlahaultA, Le Bouc Y: In vitro fertilization may increase the risk of Beckwith–Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am. J. Hum. Genet.72(5) , 1338–1341 (2003).
  • Halliday J , OkeK, BrehenyS, AlgarE, AmorDJ: Beckwith–Wiedemann syndrome and IVF: a case–control study.Am. J. Hum. Genet.75(3) , 526–528 (2004).
  • Sutcliffe AG , PetersCJ, BowdinSet al.: Assisted reproductive therapies and imprinting disorders – a preliminary british survey.Hum. Reprod.21(4) , 1009–1011 (2006).
  • Lister R , EckerJR: Finding the fifth base: Genome-wide sequencing of cytosine methylation.Genome Res.19(6) , 959–966 (2009).
  • Bibikova M , LeJ, BarnesBet al.: Genome-wide DNA methylation profiling using infinium® assay.Epigenomics1(1) , 177–200 (2009).
  • Henckel A , ArnaudP: Genome-wide identification of new imprinted genes.Brief Funct. Genomics9(4) , 304–314 (2010).
  • Tomizawa SI , KobayashiH, WatanabeTet al.: Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes.Development138 , 811–820 (2011).
  • Hansmann T , HeinzmannJ, WrenzyckiC, ZechnerU, NiemannH, HaafT: Characterization of differentially methylated regions in 3 bovine imprinted genes: a model for studying human germ-cell and embryo development.Cytogenet. Genome Res.132(4) , 239–247 (2010).
  • Wong CC , CaspiA, WilliamsBet al.: A longitudinal study of epigenetic variation in twins.Epigenetics5(6) , 516–526 (2010).
  • Edwards CA , Ferguson-SmithAC: Mechanisms regulating imprinted genes in clusters.Curr. Opin. Cell Biol.19(3) , 281–289 (2007).
  • Robertson KD : DNA methylation and human disease.Nat. Rev. Genet.6(8) , 597–610 (2005).
  • Xu Y , GoodyerCG, DealC, PolychronakosC: Functional polymorphism in the parental imprinting of the human IGF2R gene.Biochem. Biophys. Res. Commun.197(2) , 747–754 (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.