278
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Regulation of p53 function by lysine methylation

&
Pages 361-369 | Published online: 30 Jun 2011

Bibliography

  • Levine AJ : p53, the cellular gatekeeper for growth and division.Cell88(3) , 323–331 (1997).
  • Arum O , JohnsonTE: Reduced expression of the Caenorhabditis elegans p53 ortholog cep-1 results in increased longevity.J. Gerontol.62(9) , 951–959 (2007).
  • Bauer JH , PoonPC, Glatt-DeeleyH, AbramsJM, HelfandSL: Neuronal expression of p53 dominant-negative proteins in adult Drosophila melanogaster extends life span.Curr. Biol.15(22) , 2063–2068 (2005).
  • Matheu A , MaraverA, KlattPet al.: Delayed ageing through damage protection by the Arf/p53 pathway.Nature448(7151) , 375–379 (2007).
  • Molchadsky A , ShatsI, GoldfingerNet al.: p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner.PloS ONE3(11) , e3707 (2008).
  • Hu W , FengZ, TereskyAK, LevineAJ: p53 regulates maternal reproduction through LIF.Nature450(7170) , 721–724 (2007).
  • Kang HJ , FengZ, SunYet al.: Single-nucleotide polymorphisms in the p53 pathway regulate fertility in humans.Proc. Natl Acad. Sci. USA106(24) , 9761–9766 (2009).
  • Bae BI , XuH, IgarashiSet al.: p53 mediates cellular dysfunction and behavioral abnormalities in Huntington‘s disease.Neuron47(1) , 29–41 (2005).
  • Bretaud S , AllenC, InghamPW, BandmannO: p53-dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson‘s disease.J. Biochem.100(6) , 1626–1635 (2007).
  • Culmsee C , MattsonMP: p53 in neuronal apoptosis.Biochem. Biophys. Res. Comm.331(3) , 761–777 (2005).
  • Duan W , ZhuX, LadenheimBet al.: p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism.Ann. Neurol.52(5) , 597–606 (2002).
  • Minamino T , OrimoM, ShimizuIet al.: A crucial role for adipose tissue p53 in the regulation of insulin resistance.Nature Med.15(9) , 1082–1087 (2009).
  • Liu P , XuB, CavalieriTA, HockCE: Pifithrin-α attenuates p53-mediated apoptosis and improves cardiac function in response to myocardial ischemia/reperfusion in aged rats.Shock26(6) , 608–614 (2006).
  • Luo Y , KuoCC, ShenHet al.: Delayed treatment with a p53 inhibitor enhances recovery in stroke brain.Ann. Neurol.65(5) , 520–530 (2009).
  • Morrison RS , KinoshitaY, JohnsonMD, GuoW, GardenGA: p53-dependent cell death signaling in neurons.Neurochem. Res.28(1) , 15–27 (2003).
  • Brooks CL , GuW: p53 ubiquitination: Mdm2 and beyond.Mol. Cell21(3) , 307–315 (2006).
  • Harms K , NozellS, ChenX: The common and distinct target genes of the p53 family transcription factors.Cell. Mol. Life Sci.61(7–8) , 822–842 (2004).
  • Green DR , ChipukJE: p53 and metabolism: inside the TIGAR.Cell126(1) , 30–32 (2006).
  • Huang J , BergerS: The emerging field of dynamic lysine methylation of non-histone proteins.Curr. Opin. Genet. Dev.18(2) , 152–158 (2008).
  • Lan F , ShiY: Epigenetic regulation: methylation of histone and non-histone proteins.Sci. China52(4) , 311–322 (2009).
  • Appella E , AndersonCW: Post-translational modifications and activation of p53 by genotoxic stresses.Eur. J. Biochem.268(10) , 2764–2772 (2001).
  • Brooks C l, Gu W: Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr. Opin. Cell Biol.15(2) , 164–171 (2003).
  • Zhang K , DentSY: Histone modifying enzymes and cancer: going beyond histones.J. Cell. Biochem.96(6) , 1137–1148 (2005).
  • Daniel JA , Pray-GrantMG, GrantPA: Effector proteins for methylated histones: an expanding family.Cell Cycle4(7) , 919–926 (2005).
  • Trojer P , LiG, SimsRJ 3rd et al.: L3MBTL1, a histone-methylation-dependent chromatin lock. Cell129(5) , 915–928 (2007).
  • Kalakonda N , FischleW, BoccuniPet al.: Histone H4 lysine 20 monomethylation promotes transcriptional repression by L3MBTL1.Oncogene27(31) , 4293–4304 (2008).
  • Sims JK , RiceJC: PR-SET7 establishes a repressive trans-tail histone code that regulates differentiation.Mol. Cell. Biol.28(14) , 4459–4468 (2008).
  • Huang J , SenguptaR, Espejo Ab et al.: p53 is regulated by the lysine demethylase LSD1. Nature449(7158) , 105–108 (2007).
  • Kachirskaia I , ShiX, YamaguchiHet al.: Role for 53BP1 Tudor domain recognition of p53 dimethylated at lysine 382 in DNA damage signaling.J. Biol. Chem.283(50) , 34660–34666 (2008).
  • Schotta G , LachnerM, SarmaKet al.: A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin.Genes Dev.18(11) , 1251–1262 (2004).
  • Regha K , Sloane Ma, Huang R et al.: Active and repressive chromatin are interspersed without spreading in an imprinted gene cluster in the mammalian genome. Mol. Cell27(3) , 353–366 (2007).
  • Pannetier M , JulienE, SchottaGet al.: PR-SET7 and SUV4-20H regulate H4 lysine-20 methylation at imprinting control regions in the mouse.EMBO Rep.9(10) , 998–1005 (2008).
  • Levy D , GozaniO: Decoding chromatin goes high tech.Cell142(6) , 844–846 (2010)
  • Wang H , CaoR, XiaLet al.: Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase.Mol. Cell8(6) , 1207–1217 (2001).
  • Nishioka K , ChuikovS, SarmaKet al.: SET9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation.Genes Dev.16(4) , 479–489 (2002).
  • Pradhan S , ChinHG, EstevePO, JacobsenSE: SET7/9 mediated methylation of non-histone proteins in mammalian cells.Epigenetics4(6) , 383–387 (2009).
  • Yang XD , LambA, ChenLF: Methylation, a new epigenetic mark for protein stability.Epigenetics4(7) , 429–433 (2009).
  • Ea CK , BaltimoreD: Regulation of NF-κB activity through lysine monomethylation of p65.Proc. Natl Acad. Sci. USA106(45) , 18972–18977 (2009).
  • Lu T , Jackson Mw, Wang B et al.: Regulation of NF-κB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc. Natl Acad. Sci. USA107(1) , 46–51 (2010).
  • Chuikov S , KurashJK, WilsonJRet al.: Regulation of p53 activity through lysine methylation.Nature432(7015) , 353–360 (2004).
  • Ivanov GS , IvanovaT, KurashJet al.: Methylation–acetylation interplay activates p53 in response to DNA damage.Mol. Cell. Biol.27(19) , 6756–6769 (2007).
  • Kurash JK , LeiH, ShenQet al.: Methylation of p53 by SET7/9 mediates p53 acetylation and activity in vivo.Mol. Cell29(3) , 392–400 (2008).
  • Liu X , WangD, ZhaoYet al.: Methyltransferase SET7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1).Proc. Natl Acad. Sci. USA108(5) , 1925–1930 (2011).
  • Huang J , Perez-BurgosL, PlacekBJet al.: Repression of p53 activity by Smyd2-mediated methylation.Nature444(7119) , 629–632 (2006).
  • Botuyan MV , LeeJ, WardIMet al.: Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair.Cell127(7) , 1361–1373 (2006).
  • Lee MG , WynderC, CoochN, ShiekhattarR: An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation.Nature437(7057) , 432–435 (2005).
  • Shi YJ , MatsonC, LanF, IwaseS, BabaT, ShiY: Regulation of LSD1 histone demethylase activity by its associated factors.Mol. Cell19(6) , 857–864 (2005).
  • Shi X , KachirskaiaI, YamaguchiHet al.: Modulation of p53 function by SET8-mediated methylation at lysine 382.Mol. Cell27(4) , 636–646 (2007).
  • Talasz H , LindnerHH, SargB, HelligerW: Histone H4-lysine 20 monomethylation is increased in promoter and coding regions of active genes and correlates with hyperacetylation.J. Biol. Chem.280(46) , 38814–38822 (2005).
  • Vakoc CR , SachdevaMM, WangH, BlobelGA: Profile of histone lysine methylation across transcribed mammalian chromatin.Mol. Cell. Biol.26(24) , 9185–9195 (2006).
  • Congdon LM , HoustonSI, VeerappanCS, SpektorTM, RiceJC: PR-SET7-mediated monomethylation of histone H4 lysine 20 at specific genomic regions induces transcriptional repression.J. Cell. Biochem.110(3) , 609–619 (2010).
  • Huen MS , SySM, Van Deursen JM, Chen J: Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication. J. Biol. Chem.283(17) , 11073–11077 (2008).
  • Houston SI , McmanusKJ, AdamsMMet al.: Catalytic function of the PR-SET7 histone H4 lysine 20 monomethyltransferase is essential for mitotic entry and genomic stability.J. Biol. Chem.283(28) , 19478–19488 (2008).
  • Rice JC , NishiokaK, SarmaK, StewardR, ReinbergD, AllisCD: Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-SET7 expression and its localization to mitotic chromosomes.Genes Dev.16(17) , 2225–2230 (2002).
  • Karachentsev D , SarmaK, ReinbergD, StewardR: PR-SET7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis.Genes Dev.19(4) , 431–435 (2005).
  • Jorgensen S , ElversI, TrelleMBet al.: The histone methyltransferase SET8 is required for S-phase progression.J. Cell Biol.179(7) , 1337–1345 (2007).
  • Tardat M , MurrR, HercegZ, SardetC, JulienE: PR-SET7-dependent lysine methylation ensures genome replication and stability through S phase.J. Cell Biol.179(7) , 1413–1426 (2007).
  • West L e, Roy S, Lachmi-Weiner K et al.: The MBT repeats of L3MBTL1 link set8 mediated p53 methylation at lysine 382 to target gene repression. J. Biol. Chem.285(48) , 37725–37732 (2010).
  • Li H , FischleW, WangWet al.: Structural basis for lower lysine methylation state-specific readout by MBT repeats of L3MBTL1 and an engineered PHD finger.Mol. Cell28(4) , 677–691 (2007).
  • Min J , Allali-HassaniA, NadyNet al.: L3MBTL1 recognition of mono- and dimethylated histones.Nat. Struct. Mol. Biol.14(12) , 1229–1230 (2007).
  • Kim J , DanielJ, EspejoAet al.: Tudor, MBT and chromo domains gauge the degree of lysine methylation.EMBO Rep.7(4) , 397–403 (2006).
  • Saddic LA , WestLE, AslanianAet al.: Methylation of the retinoblastoma tumor suppressor by SMYD2.J. Biol. Chem.285(48) , 37733–37740 (2010).
  • Boccuni P , MacgroganD, ScanduraJM, NimerSD: The human L(3)MBT polycomb group protein is a transcriptional repressor and interacts physically and functionally with TEL (ETV6).J. Biol. Chem.278(17) , 15412–15420 (2003).
  • Yang H , PesaventoJJ, StarnesTWet al.: Preferential dimethylation of histone H4 lysine 20 by Suv4-20.J. Biol. Chem.283(18) , 12085–12092 (2008).
  • Tachibana M , UedaJ, FukudaMet al.: Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9.Genes Dev.19(7) , 815–826 (2005).
  • Tachibana M , MatsumuraY, FukudaM, KimuraH, ShinkaiY: G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription.EMBO J.27(20) , 2681–2690 (2008).
  • Huang J , DorseyJ, ChuikovSet al.: G9a and Glp methylate lysine 373 in the tumor suppressor p53.J. Biol. Chem.285(13) , 9636–9641 (2010).
  • Munro S , KhaireN, IncheA, CarrS, La Thangue NB: Lysine methylation regulates the pRb tumour suppressor protein. Oncogene29(16) , 2357–2367 (2010).
  • Yang X d, Huang B, Li M, Lamb A, Kelleher Nl, Chen LF: Negative regulation of NF-κB action by SET9-mediated lysine methylation of the RelA subunit. EMBO J.28(8) , 1055–1066 (2009).
  • Levy D , Kuo Aj, Chang Y et al.: Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling. Nat. Immunol.12(1) , 29–36 (2010).
  • Subramanian K , JiaD, Kapoor-VaziraniPet al.: Regulation of estrogen receptor α by the SET7 lysine methyltransferase.Mol. Cell30(3) , 336–347 (2008).
  • Yang J , HuangJ, DasguptaMet al.: Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes.Proc. Natl Acad. Sci. USA107(50) , 21499–21504 (2010).
  • Wang J , HeviS, KurashJKet al.: The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation.Nat. Genetics41(1) , 125–129 (2009).
  • Krummel K a, Lee CJ, Toledo F, Wahl GM: The C-terminal lysines fine-tune P53 stress responses in a mouse model but are not required for stability control or transactivation. Proc. Natl Acad. Sci. USA102(29) , 10188–10193 (2005).
  • Toledo F , WahlGM: Regulating the p53 pathway: in vitro hypotheses, in vivo veritas.Nat. Rev.6(12) , 909–923 (2006).
  • Benkirane M , SardetC, CouxO: Lessons from interconnected ubiquitylation and acetylation of p53: think metastable networks.Biochem. Soc. Trans.38(Pt 1) , 98–103 (2010).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.