821
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic diet: impact on the epigenome and cancer

&
Pages 503-518 | Published online: 18 Aug 2011

Bibliography

  • Knekt P , JärvinenR, SeppänenRet al. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am. J. Epidemiol. 146(3) , 223–230 (1997).
  • Howells LM , MoiseevaEP, NealCPet al. Predicting the physiological relevance of in vitro cancer preventive activities of phytochemicals. Acta Pharmacol. Sin. 28(9) , 1274–1304 (2007).
  • Fowke JH . Head and neck cancer. A case for inhibition by isothiocyanates and indoles from cruciferous vegetables. Eur. J. Cancer Prev.16(4) , 348–356 (2007).
  • De Kok T , Van Breda S, Manson M. Mechanisms of combined action of different chemopreventive dietary compounds. Eur. J. Nutr.47 , 51–59 (2008).
  • Kunnumakkara AB , AnandP, AggarwalBB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett.269(2) , 199–225 (2008).
  • Ravindran J , PrasadS, AggarwalB. Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J.11(3) , 495–510 (2009).
  • Ho E , ClarkeJD, DashwoodRH. Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention. J. Nutr.139(12) , 2393–2396 (2009).
  • Cheung KL , KhorTO, Huang M-T, Kong A-N. Differential in vivo mechanism of chemoprevention of tumor formation in azoxymethane/dextran sodium sulfate mice by PEITC and DBM. Carcinogenesis31(5) , 880–885 (2010).
  • Shu L , Cheung K-L, Khor T, Chen C, Kong A-N. Phytochemicals: cancer chemoprevention and suppression of tumor onset and metastasis. Cancer Metastasis Rev.29(3) , 483–502 (2010).
  • Waddington CH . The epigenotype. Endeavour1 , 18–20 (1942).
  • Holliday R . Mechanisms for the control of gene activity during development. Biol. Rev. Camb. Philos. Soc.65(4) , 431–471 (1990).
  • Herceg Z . Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis22(2) , 91–103 (2007).
  • Bird A . DNA methylation patterns and epigenetic memory. Genes Dev.16(1) , 6–21 (2002).
  • Jones PA , BaylinSB. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet.3(6) , 415–428 (2002).
  • Altaf M , SaksoukN, CôtéJ. Histone modifications in response to DNA damage. Mutat. Res.618(1–2) , 81–90 (2007).
  • Meeran S , AhmedA, TollefsbolT. Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin. Epigenetics1(3) , 101–116 (2010).
  • Tate PH , BirdAP. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Opin. Genet. Dev.3(2) , 226–231 (1993).
  • Stresemann C , BruecknerB, MuschT, StopperH, LykoF. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res.66(5) , 2794–2800 (2006).
  • Grafodatskaya D , ChungB, SzatmariP, WeksbergR. Autism spectrum disorders and epigenetics. J. Am. Acad. Child Adolesc. Psychiatry49(8) , 794–809 (2010).
  • Milagro FI , CampiónJ, CorderoPet al. A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. FASEB J. 25(4) , 1378–1389 (2011).
  • Maier S , OlekA. Diabetes: a candidate disease for efficient DNA methylation profiling. J. Nutr.132(8) , 2440S–2443S (2002).
  • Chowdhury S , EricksonSW, MacleodSLet al. Maternal genome-wide DNA methylation patterns and congenital heart defects. PLoS ONE 6(1) , e16506 (2011).
  • Nephew KP , Huang TH-M. Epigenetic gene silencing in cancer initiation and progression. Cancer Lett.190(2) , 125–133 (2003).
  • Feinberg AP , VogelsteinB. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature301(5895) , 89–92 (1983).
  • Irizarry RA , Ladd-AcostaC, WenBet al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41(2) , 178–186 (2009).
  • Doi A , Park I-H, Wen B et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet.41(12) , 1350–1353 (2009).
  • Feinberg AP , OhlssonR, HenikoffS. The epigenetic progenitor origin of human cancer. Nat. Rev. Genet.7(1) , 21–33 (2006).
  • Hassan YI , ZempleniJ. Epigenetic regulation of chromatin structure and gene function by biotin. J. Nutr.136(7) , 1763–1765 (2006).
  • Choudhuri S , CuiY, KlaassenCD. Molecular targets of epigenetic regulation and effectors of environmental influences. Toxicol. Appl. Pharmacol.245(3) , 378–393 (2010).
  • Mottet D , CastronovoV. Histone deacetylases: target enzymes for cancer therapy. Clin. Exp. Metastasis25(2) , 183–189 (2008).
  • Lafon-Hughes L , Di Tomaso MV, Méndez-Acuña L, Martínez-López W. Chromatin-remodelling mechanisms in cancer. Mutat. Res.658(3) , 191–214 (2008).
  • Montgomery MK , XuS, FireA. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA95(26) , 15502–15507 (1998).
  • Volpe TA , KidnerC, HallIM, TengG, GrewalSIS, MartienssenRA. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science297(5588) , 1833–1837 (2002).
  • Panning B , JaenischR. RNA and the epigenetic regulation of X chromosome inactivation. Cell93(3) , 305–308 (1998).
  • Zilberman D , CaoX, JacobsenSE. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science299(5607) , 716–719 (2003).
  • Tufarelli C , StanleyJA, GarrickDet al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat. Genet. 34(2) , 157–165 (2003).
  • Wang Y -H, Liu S, Zhang G et al. Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo. Breast Cancer Res.7(2) , R220–R228 (2005).
  • Lakka SS , GondiCS, DinhDHet al. Specific interference of urokinase-type plasminogen activator receptor and matrix metalloproteinase-9 gene expression induced by double-stranded RNA results in decreased invasion, tumor growth, and angiogenesis in gliomas. J. Biol. Chem. 280(23) , 21882–21892 (2005).
  • Fleming JB , Shen G-L, Holloway SE, Davis M, Brekken RA. Molecular consequences of silencing mutant K-ras in pancreatic cancer cells: justification for K-ras-directed therapy. Mol. Cancer Res.3(7) , 413–423 (2005).
  • Liang X , YangX, TangYet al. RNAi-mediated downregulation of urokinase plasminogen activator receptor inhibits proliferation, adhesion, migration and invasion in oral cancer cells. Oral Oncol. 44(12) , 1172–1180 (2008).
  • Yavari K , TaghikhaniM, Ghannadi Maragheh M, Mesbah-Namin S, Babaei M. Downregulation of IGF-IR expression by RNAi inhibits proliferation and enhances chemosensitization of human colon cancer cells. Int. J. Colorectal Dis.25(1) , 9–16 (2010).
  • Lujambio A , PortelaA, LizJet al. CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene 29(48) , 6390–6401 (2010).
  • Guil S , EstellerM. DNA methylomes, histone codes and miRNAs: Tying it all together. Int. J. Biochem. Cell Biol.41(1) , 87–95 (2009).
  • Ducasse M , BrownM. Epigenetic aberrations and cancer. Mol. Cancer5(1) , 60 (2006).
  • Egger G , LiangG, AparicioA, JonesPA. Epigenetics in human disease and prospects for epigenetic therapy. Nature429(6990) , 457–463 (2004).
  • Martínez MA , GutiérrezA, Armand-UgónMet al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS 16(18) , 2385–2390 (2002).
  • Jones PA , BaylinSB. The epigenomics of cancer. Cell128(4) , 683–692 (2007).
  • Yoo CB , JonesPA. Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov.5(1) , 37–50 (2006).
  • Schuebel KE , ChenW, CopeLet al. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet. 3(9) , e157 (2007).
  • Cairns P . Gene methylation and early detection of genitourinary cancer: the road ahead. Nat. Rev. Cancer7(7) , 531–543 (2007).
  • Cox PM , GodingCR. Transcription and cancer. Br. J. Cancer63(5) , 651–662 (1991).
  • Taby R , Issa J-PJ. Cancer epigenetics. CA Cancer J. Clin.60(6) , 376–392 (2010).
  • Issa J -P. Cancer prevention: epigenetics steps up to the plate. Cancer Prev. Res.1(4) , 219–222 (2008).
  • Esteller M , Sanchez-CespedesM, RosellR, SidranskyD, BaylinSB, HermanJG. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res.59(1) , 67–70 (1999).
  • Esteller M . Epigenetics in cancer. N. Engl. J. Med.358(11) , 1148–1159 (2008).
  • Link A , BalaguerF, GoelA. Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem. Pharmacol.80(12) , 1771–1792 (2010).
  • Landis-Piwowar KR , MilacicV, DouQP. Relationship between the methylation status of dietary flavonoids and their growth-inhibitory and apoptosis-inducing activities in human cancer cells. J. Cell. Biochem.105(2) , 514–523 (2008).
  • Li Y , TollefsbolTO. p16INK4a suppression by glucose restriction contributes to human cellular lifespan extension through SIRT1-mediated epigenetic and genetic mechanisms. PLoS ONE6(2) , e17421 (2011).
  • Meeran SM , PatelSN, TollefsbolTO. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS ONE5(7) , e11457 (2010).
  • Paluszczak J , Krajka-KuzniakV, Baer-DubowskaW. The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol. Lett.192(2) , 119–125 (2010).
  • Lee KW , LeeHJ, LeeCY. Vitamins, phytochemicals, diets, and their implementation in cancer chemoprevention. Crit. Rev. Food Sci. Nutr.44(6) , 437–452 (2004).
  • Singh KP , DumondJW. Genetic and epigenetic changes induced by chronic low dose exposure to arsenic of mouse testicular Leydig cells. Int. J. Oncol.30(1) , 253–260 (2007).
  • Xie Y , LiuJ, Benbrahim-TallaaLet al. Aberrant DNA methylation and gene expression in livers of newborn mice transplacentally exposed to a hepatocarcinogenic dose of inorganic arsenic. Toxicology 236(1–2) , 7–15 (2007).
  • Bertram C , KhanO, OhriS, PhillipsDI, MatthewsSG, HansonMA. Transgenerational effects of prenatal nutrient restriction on cardiovascular and hypothalamic-pituitary-adrenal function. J. Physiol.586(8) , 2217–2229 (2008).
  • Novikova SI , HeF, BaiJ, CutrufelloNJ, LidowMS, UndiehAS. Maternal cocaine administration in mice alters DNA methylation and gene expression in hippocampal neurons of neonatal and prepubertal offspring. PLoS ONE3(4) , e1919 (2008).
  • Andersen HR , SchmidtIM, GrandjeanPet al. Impaired reproductive development in sons of women occupationally exposed to pesticides during pregnancy. Environ. Health Perspect. 116(4) , 566–572 (2008).
  • Heijmans BT , TobiEW, SteinADet al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. 105(44) , 17046–17049 (2008).
  • Skinner MK , Guerrero-BosagnaC. Environmental signals and transgenerational epigenetics. Epigenomics1(1) , 111–117 (2009).
  • Jaenisch R , BirdA. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet.33 , 245–254 (2003).
  • Poirier LA . Methyl group deficiency in hepatocarcinogenesis. Drug Metab. Rev.26(1–2) , 185–199 (1994).
  • Pogribny IP , RossSA, WiseCet al. Irreversible global DNA hypomethylation as a key step in hepatocarcinogenesis induced by dietary methyl deficiency. Mutat. Res. 593(1–2) , 80–87 (2006).
  • Bravo L . Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev.56(11) , 317–333 (1998).
  • Harborne J . Methods in plant biochemistry. In: Plant Phenolics. Academic Press, London, UK (1989).
  • Shukla Y , SinghR. Resveratrol and cellular mechanisms of cancer prevention. Ann. NY Acad. Sci.1215(1) , 1–8 (2011).
  • Cui X , JinY, HofsethABet al. Resveratrol suppresses colitis and colon cancer associated with colitis. Cancer Prev. Res. 3(4) , 549–559 (2010).
  • Aggarwal BB , ShishodiaS. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol.71(10) , 1397–1421 (2006).
  • Fang M , ChenD, YangCS. Dietary polyphenols may affect DNA methylation. J. Nutr.137(1) , 223S–228S (2007).
  • Lee WJ , Shim J-Y, Zhu BT. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol. Pharmacol.68(4) , 1018–1030 (2005).
  • Shen FM , ChenHW. Element composition of tea leaves and tea infusions and its impact on health. Bull. of Environ. Contam. Toxicol.80(3) , 300–304 (2008).
  • Fujihara T , Nakagawa-IzumiA, OzawaT, NumataO. High-molecular-weight polyphenols from oolong tea and black tea: purification, some properties, and role in increasing mitochondrial membrane potential. Biosci. Biotechnol. Biochem.71(3) , 711–719 (2007).
  • Graham HN . Green tea composition, consumption, and polyphenol chemistry. Prev. Med.21(3) , 334–350 (1992).
  • Lin J -K, Liang Y-C, Lin-Shiau S-Y. Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochem. Pharmacol.58(6) , 911–915 (1999).
  • Chuang JC , YooCB, KwanJMet al. Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2´-deoxycytidine. Mol. Cancer Ther. 4(10) , 1515–1520 (2005).
  • Shanmugam MK , KannaiyanR, SethiG. Targeting cell signaling and apoptotic pathways by dietary agents: role in the prevention and treatment of cancer. Nutr. Cancer63(2) , 161–173 (2011).
  • Chen P -N, Chu S-C, Kuo W-H, Chou M-Y, Lin J-K, Hsieh Y-S. Epigallocatechin-3 gallate inhibits invasion, epithelial-mesenchymal transition, and tumor growth in oral cancer cells. J. Agric. Food Chem.59(8) , 3836–3844 (2011).
  • Tu S -H, Ku C-Y, Ho C-T et al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits nicotine- and estrogen-induced α9-nicotinic acetylcholine receptor upregulation in human breast cancer cells. Mol. Nutr. Food Res.55(3) , 455–466 (2011).
  • Kürbitz C , HeiseD, RedmerTet al. Epicatechin gallate and catechin gallate are superior to epigallocatechin gallate in growth suppression and anti-inflammatory activities in pancreatic tumor cells. Cancer Sci. 102(4) , 728–734 (2011).
  • Kim JW , AminAR, ShinDM. Chemoprevention of head and neck cancer with green tea polyphenols. Cancer Prev. Res.3(8) , 900–909 (2010).
  • Yang C , LambertJ, SangS. Antioxidative and anti-carcinogenic activities of tea polyphenols. Arch. Toxicol.83(1) , 11–21 (2009).
  • Li Y , TollefsbolTO. Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr. Med. Chem.17 , 2141–2151 (2010).
  • Farabegoli F , PapiA, BartoliniG, OstanR, OrlandiM. (-)-epigallocatechin-3-gallate downregulates P-gP and BCRP in a tamoxifen resistant MCF-7 cell line. Phytomedicine17 , 356–362 (2010).
  • Balasubramanian S , AdhikaryG, EckertRL. The Bmi-1 polycomb protein antagonizes the (-)-epigallocatechin-3-gallate-dependent suppression of skin cancer cell survival. Carcinogenesis31(3) , 496–503 (2010).
  • Berletch JB , LiuC, LoveWK, AndrewsLG, KatiyarSK, TollefsbolTO. Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J. Cell. Biochem.103(2) , 509–519 (2008).
  • Lee AH , FraserML, MengX, BinnsCW. Protective effects of green tea against prostate cancer. Expert Rev. Anticancer Ther.6(4) , 507–513 (2006).
  • Fang MZ , WangY, AiNet al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 63(22) , 7563–7570 (2003).
  • Nandakumar V , VaidM, KatiyarSK. (-)-epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis32(4) , 537–544 (2011).
  • Li Y , Yuan Y-Y, Meeran S, Tollefsbol T. Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells. Mol. Cancer9(1) , 274 (2010).
  • Gao Z , XuZ, Hung M-S et al. Promoter demethylation of WIF-1 by epigallocatechin-3-gallate in lung cancer cells. Anticancer Res.29(6) , 2025–2030 (2009).
  • Kato K , LongNK, MakitaHet al. Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. Br. J. Cancer 99(4) , 647–654 (2008).
  • Pandey M , ShuklaS, GuptaS. Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int. J. Cancer126(11) , 2520–2533 (2010).
  • Choi K -C, Jung MG, Lee Y-H et al. Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res.69(2) , 583–592 (2009).
  • Tsang WP , KwokTT. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J. Nutr. Biochem.21(2) , 140–146 (2010).
  • Tran P , Kim S-A, Choi H, Yoon J-H, Ahn S-G. Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo. BMC Cancer10(1) , 276 (2010).
  • Sagara Y , MiyataY, NomataK, HayashiT, KanetakeH. Green tea polyphenol suppresses tumor invasion and angiogenesis in N-butyl-(-4-hydroxybutyl) nitrosamine-induced bladder cancer. Cancer Epidemiol.34(3) , 350–354 (2010).
  • Zhang D , Al-HendyM, Richard-DavisGet al. Green tea extract inhibits proliferation of uterine leiomyoma cells in vitro and in nude mice. Am. J. Obs. Gynecol. 202(3) , 289 e1–e9 (2010).
  • Lam WH , KaziA, KuhnDJet al. A potential prodrug for a green tea polyphenol proteasome inhibitor: evaluation of the peracetate ester of (-)-epigallocatechin gallate [(-)-EGCG]. Bioorganic Med. Chem. 12(21) , 5587–5593 (2004).
  • Meeran SM , PatelSN, Chan T-H, Tollefsbol TO. A novel prodrug of epigallocatechin-3-gallate: Differential epigenetic hTERT repression in human breast cancer cells. Cancer Prev. Res. doi: 10.1158/1940-6207.CAPR-11-0009 (2011) (Epub ahead of print).
  • Landis-Piwowar KR , HuoC, ChenDet al. A novel prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Res. 67(9) , 4303–4310 (2007).
  • Das D , MukherjeeS, RayD. Resveratrol and red wine, healthy heart and longevity. Heart Fail. Rev.15(5) , 467–477 (2010).
  • Athar M , BackJH, KopelovichL, BickersDR, KimAL. Multiple molecular targets of resveratrol: anti-carcinogenic mechanisms. Arch. Biochem. Biophys.486(2) , 95–102 (2009).
  • Baur JA , SinclairDA. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug. Discov.5(6) , 493–506 (2006).
  • Bishayee A , WaghrayA, BarnesKet al. Suppression of the inflammatory cascade is implicated in resveratrol chemoprevention of experimental hepatocarcinogenesis. Pharmaceut. Res. 27(6) , 1080–1091 (2010).
  • Bishayee A , PolitisT, DarveshAS. Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma. Cancer Treat. Rev.36(1) , 43–53 (2010).
  • Kraft TE , ParisottoD, SchemppC, EfferthT. Fighting cancer with red wine? Molecular mechanisms of resveratrol. Crit. Rev. Food Sci. Nutr.49(9) , 782–799 (2009).
  • Mao Q -Q, Bai Y, Lin Y-W et al. Resveratrol confers resistance against taxol via induction of cell cycle arrest in human cancer cell lines. Mol. Nutr. Food Res.54(11) , 1574–1584 (2010).
  • Vanamala J , ReddivariL, RadhakrishnanS, TarverC. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways. BMC Cancer10(1) , 238 (2010).
  • Liu P -L, Tsai J-R, Charles AL et al. Resveratrol inhibits human lung adenocarcinoma cell metastasis by suppressing heme oxygenase 1-mediated nuclear factor-κB pathway and subsequently downregulating expression of matrix metalloproteinases. Mol. Nutr. Food Res.54(S2) , S196–S204 (2010).
  • Wu H , LiangX, FangY, QinX, ZhangY, LiuJ. Resveratrol inhibits hypoxia-induced metastasis potential enhancement by restricting hypoxia-induced factor-1[α] expression in colon carcinoma cells. Biomed. Pharmacother.62(9) , 613–621 (2008).
  • Weng YL , LiaoHF, LiAF, ChangJC, ChiouRY. Oral administration of resveratrol in suppression of pulmonary metastasis of BALB/c mice challenged with CT26 colorectal adenocarcinoma cells. Mol. Nutr. Food Res.54(2) , 259–267 (2010).
  • Jang M , CaiL, UdeaniGOet al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297) , 218–220 (1997).
  • Papoutsis AJ , LamoreSD, WondrakGT, SelminOI, RomagnoloDF. Resveratrol prevents epigenetic silencing of BRCA-1 by the aromatic hydrocarbon receptor in human breast cancer cells. J. Nutr.140(9) , 1607–1614 (2010).
  • Stefanska B , RudnickaK, BednarekA, Fabianowska-MajewskaK. Hypomethylation and induction of retinoic acid receptor β 2 by concurrent action of adenosine analogues and natural compounds in breast cancer cells. Eur. J. Pharmacol.638(1–3) , 47–53 (2010).
  • Paluszczak J , Krajka-KuzniakV, MaleckaZet al. Frequent gene hypermethylation in laryngeal cancer cell lines and the resistance to demethylation induction by plant polyphenols. Toxicol. In Vitro 25(1) , 213–221 (2011).
  • Howitz KT , BittermanKJ, CohenHYet al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954) , 191–196 (2003).
  • Hoshino I , MatsubaraH. Recent advances in histone deacetylase targeted cancer therapy. Surgery Today40(9) , 809–815 (2010).
  • Pruitt K , ZinnRL, OhmJEet al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2(3) , e40 (2006).
  • Boily G , HeXH, PearceB, JardineK, McburneyMW. SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene28(32) , 2882–2893 (2009).
  • Feige JN , LagougeM, CantoCet al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 8(5) , 347–358 (2008).
  • Borra MT , SmithBC, DenuJM. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem.280(17) , 17187–17195 (2005).
  • Wang R -H, Zheng Y, Kim H-S et al. Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol. Cell32(1) , 11–20 (2008).
  • Stünkel W , PehBK, TanYCet al. Function of the SIRT1 protein deacetylase in cancer. Biotechnol. J. 2(11) , 1360–1368 (2007).
  • Kai L , SamuelSK, LevensonAS. Resveratrol enhances p53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. Int. J. Cancer126(7) , 1538–1548 (2010).
  • Baur JA , PearsonKJ, PriceNLet al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117) , 337–342 (2006).
  • Haigis MC , GuarenteLP. Mammalian sirtuins – emerging roles in physiology, aging, and calorie restriction. Genes Dev.20(21) , 2913–2921 (2006).
  • Maheshwari RK , SinghAK, GaddipatiJ, SrimalRC. Multiple biological activities of curcumin: a short review. Life Sci.78(18) , 2081–2087 (2006).
  • Goel A , AggarwalBB. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr. Cancer62(7) , 919–930 (2010).
  • Liu Z , XieZ, JonesWet al. Curcumin is a potent DNA hypomethylation agent. Bioorganic Med. Chem. Lett. 19(3) , 706–709 (2009).
  • Kuck D , SinghN, LykoF, Medina-FrancoJL. Novel and selective DNA methyltransferase inhibitors: Docking-based virtual screening and experimental evaluation. Bioorganic Med. Chem.18(2) , 822–829 (2010).
  • Fu S , KurzrockR. Development of curcumin as an epigenetic agent. Cancer116(20) , 4670–4676 (2010).
  • Liu H -L, Chen Y, Cui G-H, Zhou J-F. Curcumin, a potent anti-tumor reagent, is a novel histone deacetylase inhibitor regulating B-NHL cell line Raji proliferation. Acta Pharmacol. Sin.26(5) , 603–609 (2005).
  • Valinluck V , SowersLC. Inflammation-mediated cytosine damage: a mechanistic link between inflammation and the epigenetic alterations in human cancers. Cancer Res.67(12) , 5583–5586 (2007).
  • Kang S -K, Cha S-H, Jeon H-G. Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev.15(2) , 165–174 (2006).
  • Cui L , MiaoJ, FuruyaT, LiX, Su X-Z, Cui L. PfGCN5-mediated histone H3 acetylation plays a key role in gene expression in Plasmodium falciparum. Eukaryotic Cell.6(7) , 1219–1227 (2007).
  • Pollack BP , SapkotaB, BossJM. Ultraviolet radiation-induced transcription is associated with gene-specific histone acetylation. Photochem. Photobiol.85(3) , 652–662 (2009).
  • Sng JCG , TaniuraH, YonedaY. Histone modifications in kainate-induced status epilepticus. Eur. J. Neurosci.23(5) , 1269–1282 (2006).
  • Chiu J , KhanZA, FarhangkhoeeH, ChakrabartiS. Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-κB. Nutrition25(9) , 964–972 (2009).
  • Tikoo K , MeenaRL, KabraDG, GaikwadAB. Change in post-translational modifications of histone H3, heat-shock protein-27 and MAP kinase p38 expression by curcumin in streptozotocin-induced type I diabetic nephropathy. Br. J. Pharmacol.153(6) , 1225–1231 (2008).
  • Morimoto T , SunagawaY, KawamuraTet al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J. Clin. Invest. 118(3) , 868–878 (2008).
  • Lee Y -H, Hong SW, Jun W et al. Anti-histone acetyltransferase activity from allspice extracts inhibits androgen receptor-dependent prostate cancer cell growth. Biosci. Biotechnol. Biochem.71(11) , 2712–2719 (2007).
  • Reuter S , EifesS, DicatoM, AggarwalBB, DiederichM. Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem. Pharmacol.76(11) , 1340–1351 (2008).
  • Marcu MG , JungYJ, LeeSet al. Curcumin is an inhibitor of p300 histone acetyltransferase. Med. Chem. 2(2) , 169–174 (2006).
  • Balasubramanyam K , VarierRA, AltafMet al. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem. 279(49) , 51163–51171 (2004).
  • Kutluay SB , DoroghaziJ, RoemerME, TriezenbergSJ. Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virology373(2) , 239–247 (2008).
  • Sun M , EstrovZ, JiY, CoombesKR, HarrisDH, KurzrockR. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol. Cancer Ther.7(3) , 464–473 (2008).
  • Ali S , AhmadA, BanerjeeSet al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 70(9) , 3606–3617 (2010).
  • Zhang F , KohGY, JeansonneDPet al. A novel solubility-enhanced curcumin formulation showing stability and maintenance of anticancer activity. J. Pharm. Sci. 100(7) , 2778–2789 (2011).
  • Gupta NK , DixitVK. Bioavailability enhancement of curcumin by complexation with phosphatidyl choline. J. Pharm. Sci.100(5) , 1987–1995 (2011).
  • Valls J , MillánS, MartíMP, BorràsE, ArolaL. Advanced separation methods of food anthocyanins, isoflavones and flavanols. J. Chromatog. A1216(43) , 7143–7172 (2009).
  • Barnes S . Effect of genistein on in vitro and in vivo models of cancer. J. Nutr.125(Suppl. 3) , 777S–783S (1995).
  • Vardi A , BosvielR, RabiauNet al. Soy phytoestrogens modify DNA methylation of GSTP1, RASSF1A, EPH2 and BRCA1 promoter in prostate cancer cells. In vivo 24(4) , 393–400 (2010).
  • Lattrich C , LubigJ, SpringwaldA, GoerseR, OrtmannO, TreeckO. Additive effects of trastuzumab and genistein on human breast cancer cells. Anti-Cancer Drugs22(3) , 253–261 (2011).
  • Fang MZ , ChenD, SunY, JinZ, ChristmanK, YangCS. Reversal of hypermethylation and reactivation of p16INK4a, RARβ, and MGMT genes by genistein and other isoflavones from soy. Clin. Cancer Res.11(19) , 7033–7041 (2005).
  • Li Y , LiuL, AndrewsLG, TollefsbolTO. Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms. Int. J. Cancer125(2) , 286–296 (2009).
  • Majid S , KikunoN, NellesJet al. Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res. 68(8) , 2736–2744 (2008).
  • Kikuno N , ShiinaH, UrakamiSet al. Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int. J. Cancer 123(3) , 552–560 (2008).
  • King-Batoon A , LeszczynskaJM, KleinCB. Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ. Mol. Mutagen.49(1) , 36–45 (2008).
  • Majid S , DarAA, ShahryariVet al. Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-cell translocation gene 3 in prostate cancer. Cancer 116(1) , 66–76 (2010).
  • Majid S , DarAA, AhmadAEet al.BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis30(4) , 662–670 (2009).
  • Raynal NJ , CharbonneauM., Momparler LF, Momparler RL. Synergistic effect of 5-aza-2-deoxycytidine and genistein in combination against leukemia. Oncol. Res.17 , 223–230 (2008).
  • Li Y , VandenboomTG, KongDet al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 69(16) , 6704–6712 (2009).
  • Parker LP , TaylorDD, KestersonJ, MetzingerDS, Gercel-TaylorC. Modulation of microRNA associated with ovarian cancer cells by genistein. Eur. J. Gynaecol. Oncol.30(6) , 616–621 (2009).
  • Qin W , ZhuW, ShiHet al. Soy isoflavones have an antiestrogenic effect and alter mammary promoter hypermethylation in healthy premenopausal women. Nutri. Cancer 61 , 238–244 (2009).
  • Cheung K , Kong A-N. Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J.12(1) , 87–97 (2010).
  • Fimognari C , LenziM, HreliaP. Chemoprevention of cancer by isothiocyanates and anthocyanins: mechanisms of action and structure-activity relationship. Curr. Med. Chem.15(5) , 440–447 (2008).
  • Wilkinson JT , MorseMA, KrestyLA, StonerGD. Effect of alkyl chain length on inhibition of N-nitrosomethylbenzylamine-induced esophageal tumorigenesis and DNA methylation by isothiocyanates. Carcinogenesis16(5) , 1011–1015 (1995).
  • Lu Q , LinX, FengJet al. Phenylhexyl isothiocyanate has dual function as histone deacetylase inhibitor and hypomethylating agent and can inhibit myeloma cell growth by targeting critical pathways. J. Hematol. Oncol. 1 , 6 (2008).
  • Beklemisheva AA , FangY, FengJ, MaX, DaiW, ChiaoJW. Epigenetic mechanism of growth inhibition induced by phenylhexyl isothiocyanate in prostate cancer cells. Anticancer Res.26(2A) , 1225–1230 (2006).
  • Ma X , FangY, BeklemishevaAet al. Phenylhexyl isothiocyanate inhibits histone deacetylases and remodels chromatins to induce growth arrest in human leukemia cells. Int. J. Oncol. 28 , 1287–1293 (2006).
  • Wang LG , BeklemishevaA, LiuXM, FerrariAC, FengJ, ChiaoJW. Dual action on promoter demethylation and chromatin by an isothiocyanate restored GSTP1 silenced in prostate cancer. Mol. Carcinogenesis46(1) , 24–31 (2007).
  • Higdon JV , DelageB, WilliamsDE, DashwoodRH. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharm. Res.55(3) , 224–236 (2007).
  • Pledgie-Tracy A , SobolewskiMD, DavidsonNE. Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol. Cancer Ther.6(3) , 1013–1021 (2007).
  • Keum Y -S, Khor TO, Lin W et al. Pharmacokinetics and pharmacodynamics of broccoli sprouts on the suppression of prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) mice: implication of induction of Nrf2, HO-1 and apoptosis and the suppression of Akt-dependent kinase pathway. Pharm. Res.26(10) , 2324–2331 (2009).
  • Bhamre S , SahooD, TibshiraniR, DillDL, BrooksJD. Temporal changes in gene expression induced by sulforaphane in human prostate cancer cells. Prostate69(2) , 181–190 (2009).
  • Telang U , BrazeauDA, MorrisME. Comparison of the effects of phenethyl isothiocyanate and sulforaphane on gene expression in breast cancer and normal mammary epithelial cells. Exp. Biol. Med.234(3) , 287–295 (2009).
  • Dashwood RH , HoE. Dietary agents as histone deacetylase inhibitors: sulforaphane and structurally related isothiocyanates. Nutr. Rev.66 , S36–S38 (2008).
  • Myzak MC , TongP, Dashwood W-M, Dashwood RH, Ho E. Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp. Biol. Med.232(2) , 227–234 (2007).
  • Lemire M , FillionM, BarbosaF Jr, Guimarães JR, Mergler D. Elevated levels of selenium in the typical diet of Amazonian riverside populations. Sci. Total Environ.408(19) , 4076–4084 (2010).
  • Fischer JL , LanciaJK, MathurA, SmithML. Selenium protection from DNA damage involves a Ref1/p53/Brca1 protein complex. Anticancer Res.26(2A) , 899–904 (2006).
  • Combs GF Jr, Clark LC, Turnbull BW. An analysis of cancer prevention by selenium. Biofactors14(1) , 153–159 (2001).
  • Redman C , ScottJA, BainesATet al. Inhibitory effect of selenomethionine on the growth of three selected human tumor cell lines. Cancer Lett. 125(1–2) , 103–110 (1998).
  • Xiang N , ZhaoR, SongG, ZhongW. Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells. Carcinogenesis29(11) , 2175–2181 (2008).
  • Zhuo P , DiamondAM. Molecular mechanisms by which selenoproteins affect cancer risk and progression. Biochim. Biophys. Acta (BBA)1790(11) , 1546–1554 (2009).
  • Clark LC , CombsGF, TurnbullBWet al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. JAMA 276(24) , 1957–1963 (1996).
  • Hirsch FR , LippmanSM. Advances in the biology of lung cancer chemoprevention. J. Clin. Oncol.23(14) , 3186–3197 (2005).
  • Uthus E , RossS, DavisC. Differential effects of dietary selenium (Se) and folate on methyl metabolism in liver and colon of rats. Biol. Trace Element Res.109(3) , 201–214 (2006).
  • Davis CD , UthusEO. Dietary folate and selenium affect dimethylhydrazine-induced aberrant crypt formation, global DNA methylation and one-carbon metabolism in rats. J. Nutr.133(9) , 2907–2914 (2003).
  • Davis CD , UthusEO, FinleyJW. Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon. J. Nutr.130(12) , 2903–2909 (2000).
  • Uthus EO , YokoiK, DavisCD. Selenium deficiency in Fisher-344 rats decreases plasma and tissue homocysteine concentrations and alters plasma homocysteine and cysteine redox status. J. Nutr.132(6) , 1122–1128 (2002).
  • Alpers DH . Garlic and its potential for prevention of colorectal cancer and other conditions. Curr. Opin. Gastroenterol.25(2) , 116–121 (2009).
  • Nian H , DelageB, HoE, DashwoodRH. Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ. Mol. Mutagen.50(3) , 213–221 (2009).
  • Nian H , DelageB, PintoJT, DashwoodRH. Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF1 promoter. Carcinogenesis29(9) , 1816–1824 (2008).
  • Lea MA , RandolphVM, LeeJE, DesbordesC. Induction of histone acetylation in mouse erythroleukemia cells by some organosulfur compounds including allyl isothiocyanate. Int. J. Cancer92(6) , 784–789 (2001).
  • Lea MA , IbehC, HanL, DesbordesC. Inhibition of growth and induction of differentiation markers by polyphenolic molecules and histone deacetylase inhibitors in colon cancer cells. Anticancer Res.30(2) , 311–318 (2010).
  • Cole BF , BaronJA, SandlerRSet al. Folic acid for the prevention of colorectal adenomas. JAMA 297(21) , 2351–2359 (2007).
  • Mai A , MassaS, RotiliDet al. Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med. Res. Rev. 25(3) , 261–309 (2005).
  • Kim Y -I. Folate and colorectal cancer: an evidence-based critical review. Mol. Nutr. Food Res.51(3) , 267–292 (2007).
  • Duthie S . Folate and cancer: how DNA damage, repair and methylation impact on colon carcinogenesis. J. Inherited Metab. Dis.34(1) , 101–109 (2011).
  • Yang Q , BostickRM, FriedmanJM, FlandersWD. Serum folate and cancer mortality among U.S. adults: findings from the third national health and nutritional examination survey linked mortality file. Cancer Epidemiol. Biomark. Prev.18(5) , 1439–1447 (2009).
  • Lu R , WangX, Sun D-F et al. Folic acid and sodium butyrate prevent tumorigenesis in a mouse model of colorectal cancer. Epigenetics3(6) , 330–335 (2008).
  • Marsit CJ , MccleanMD, FurnissCS, KelseyKT. Epigenetic inactivation of the SFRP genes is associated with drinking, smoking and HPV in head and neck squamous cell carcinoma. Int. J. Cancer119(8) , 1761–1766 (2006).
  • Van Engeland M , WeijenbergMP, RoemenGMet al. Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: The Netherlands cohort study on diet and cancer. Cancer Res. 63(12) , 3133–3137 (2003).
  • Giovannucci E , RimmEB, AscherioA, StampferMJ, ColditzGA, WillettWC. Alcohol, low-methionine-low-folate diets, and risk of colon cancer in men. J. Natl Cancer Inst.87(4) , 265–273 (1995).
  • Puri SK , SiL, Fan C-Y, Hanna E. Aberrant promoter hypermethylation of multiple genes in head and neck squamous cell carcinoma. Am. J. Otolaryngol.26(1) , 12–17 (2005).
  • Lee WJ , ZhuBT. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis27(2) , 269–277 (2006).
  • Davis CD , MilnerJA. Biomarkers for diet and cancer prevention research: potentials and challenges. Acta Pharmacol. Sin.28(9) , 1262–1273 (2007).
  • Sun Y , JiangX, ChenS, PriceBD. Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett.580(18) , 4353–4356 (2006).
  • Eliseeva ED , ValkovV, JungM, JungMO. Characterization of novel inhibitors of histone acetyltransferases. Mol. Cancer Ther.6(9) , 2391–2398 (2007).
  • Davis CD , MilnerJ. Frontiers in nutrigenomics, proteomics, metabolomics and cancer prevention. Mutat. Res.551(1–2) , 51–64 (2004).
  • Davis CD , HordNG. Nutritional ‘omics‘ technologies for elucidating the role(s) of bioactive food components in colon cancer prevention. J. Nutr.135(11) , 2694–2697 (2005).
  • Gallou-Kabani C , VigéA, Gross M-S, Junien C. Nutri-epigenomics: lifelong remodelling of our epigenomes by nutritional and metabolic factors and beyond. Clin. Chem. Lab. Med.45(3) , 321–327 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.