328
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Mechanisms in Experience-Driven Memory Formation and Behavior

&
Pages 649-664 | Published online: 13 Oct 2011

Bibliography

  • Craik FI . Levels of processing: past, present. and future? Memory10 , 305–318 (2002).
  • Monfils MH , CowansageKK, LeDouxJE. Brain-derived neurotrophic factor. Linking fear learning to memory consolidation. Mol. Pharmacol.72 , 235–237 (2007).
  • Lee JL , EverittBJ, ThomasKL. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science304 , 839–843 (2004).
  • Guzowski JF . Insights into immediate-early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches. Hippocampus12 , 86–104 (2002).
  • Schafe GE , NaderK, BlairHT, LeDouxJE. Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci.24 , 540–546 (2001).
  • Korzus E , RosenfeldMG, MayfordM. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron42 , 961–972 (2004).
  • Gibbs JR , van der Brug MP, Hernandez DG et al. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet.6 , e1000952 (2010).
  • Bagot RC , MeaneyMJ. Epigenetics and the biological basis of gene x environment interactions. J. Am. Acad. Child Adolesc. Psychiatry49 , 752–771 (2010).
  • Alarcon JM , MalleretG, TouzaniKet al. Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42 , 947–959 (2004).
  • Barrett RM , WoodMA. Beyond transcription factors: the role of chromatin modifying enzymes in regulating transcription required for memory. Learn Mem.15 , 460–467 (2008).
  • Bredy TW , WuH, CregoC, ZellhoeferJ, SunYE, BaradM. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn Mem.14 , 268–276 (2007).
  • Chwang WB , O‘RiordanKJ, LevensonJM, SweattJD. ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn Mem.13 , 322–328 (2006).
  • Colvis CM , PollockJD, GoodmanRHet al. Epigenetic mechanisms and gene networks in the nervous system. J. Neurosci. 25 , 10379–10389 (2005).
  • Fischer A , SananbenesiF, WangX, DobbinM, TsaiLH. Recovery of learning and memory is associated with chromatin remodelling. Nature447 , 178–182 (2007).
  • Guan Z , GiustettoM, LomvardasSet al. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 111(4) , 483–493 (2002).
  • Guan JS , HaggartySJ, GiacomettiEet al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459 , 55–60 (2009).
  • Jiang Y , LangleyB, LubinFDet al. Epigenetics in the nervous system. J. Neurosci. 28 , 11753–11759 (2008).
  • Kumar A , ChoiKH, RenthalWet al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48 , 303–314 (2005).
  • Levenson JM , SweattJD. Epigenetic mechanisms in memory formation. Nat. Rev. Neurosci.6 , 108–118 (2005).
  • Levenson JM , O‘RiordanKJ, BrownKD, TrinhMA, MolfeseDL, SweattJD. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem.279 , 40545–40559 (2004).
  • Levenson JM , SweattJD. Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation. Cell Mol. Life Sci.63 , 1009–1016 (2006).
  • Lubin FD , RothTL, SweattJD. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J. Neurosci.28 , 10576–10586 (2008).
  • Lubin FD , SweattJD. The IκB kinase regulates chromatin structure during reconsolidation of conditioned fear memories. Neuron55 , 942–957 (2007).
  • Swank MW , SweattJD. Increased histone acetyltransferase and lysine acetyltransferase activity and biphasic activation of the ERK/RSK cascade in insular cortex during novel taste learning. J. Neurosci.21 , 3383–3391 (2001).
  • Wood MA , HawkJD, AbelT. Combinatorial chromatin modifications and memory storage: a code for memory? Learn Mem.13 , 241–244 (2006).
  • Deutsch SI , RosseRB, MastropaoloJ, LongKD, GaskinsBL. Epigenetic therapeutic strategies for the treatment of neuropsychiatric disorders: ready for prime time? Clin. Neuropharmacol.31 , 104–119 (2008).
  • Broide RS , RedwineJM, AftahiN, YoungW, BloomFE, WinrowCJ. Distribution of histone deacetylases 1–11 in the rat brain. J. Mol. Neurosci.31 , 47–58 (2007).
  • de Ruijter AJ , van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J.370 , 737–749 (2003).
  • McQuown SC , BarrettRM, MatheosDPet al. HDAC3 is a critical negative regulator of long-term memory formation. J. Neurosci. 31 , 764–774 (2011).
  • Koshibu K , GraffJ, BeullensMet al. Protein phosphatase 1 regulates the histone code for long-term memory. J. Neurosci. 29 , 13079–13089 (2009).
  • Tsankova N , RenthalW, KumarA, NestlerEJ. Epigenetic regulation in psychiatric disorders. Nat. Rev. Neurosci.8 , 355–367 (2007).
  • Crosio C , HeitzE, AllisCD, BorrelliE, Sassone-CorsiP. Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. J. Cell Sci.116 , 4905–4914 (2003).
  • Fatemi M , HermannA, GowherH, JeltschA. Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. Eur. J. Biochem.269 , 4981–4984 (2002).
  • Feng J , ChangH, LiE, FanG. Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J. Neurosci. Res.79 , 734–746 (2005).
  • Feng J , ZhouY, CampbellSLet al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci. 13 , 423–430 (2010).
  • Abdolmaleky HM , ChengKH, RussoAet al. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am. J. Med. Genet. B Neuropsychiatr. Genet. 134 , 60–66 (2005).
  • Bird A . DNA methylation patterns and epigenetic memory. Genes Dev.16 , 6–21 (2002).
  • Tate PH , BirdAP. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Opin. Genet. Dev.3 , 226–231 (1993).
  • Chen WG , ChangQ, LinYet al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302 , 885–889 (2003).
  • Suzuki MM , BirdA. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet.9 , 465–476 (2008).
  • Amir RE , van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet.23 , 185–188 (1999).
  • Nan X , CampoyFJ, BirdA. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell88 , 471–481 (1997).
  • Nan X , NgHH, JohnsonCAet al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393 , 386–389 (1998).
  • Jones PL , VeenstraGJ, WadePAet al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19 , 187–191 (1998).
  • Akbarian S , HuangHS. Epigenetic regulation in human brain-focus on histone lysine methylation. Biol. Psychiatry65 , 198–203 (2009).
  • Barreto G , SchaferA, MarholdJet al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445 , 671–675 (2007).
  • Koh KP , YabuuchiA, RaoSet al. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8 , 200–213 (2011).
  • Kriaucionis S , HeintzN. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science324 , 929–930 (2009).
  • Guo JU , SuY, ZhongC, MingGL, SongH. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell145 , 423–434 (2011).
  • Iyer LM , TahilianiM, RaoA, AravindL. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle8 , 1698–1710 (2009).
  • Murray K . The occurrence of epsilon-N-methyl lysine in histones. Biochemistry3 , 10–15 (1964).
  • Martin C , ZhangY. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol.6 , 838–849 (2005).
  • Sims RJ 3rd, Nishioka K, Reinberg D. Histone lysine methylation: a signature for chromatin function. Trends Genet.19 , 629–639 (2003).
  • Henckel A , NakabayashiK, SanzLA, FeilR, HataK, ArnaudP. Histone methylation is mechanistically linked to DNA methylation at imprinting control regions in mammals. Hum. Mol. Genet.18 , 3375–3383 (2009).
  • Cheng X , BlumenthalRM. Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry49 , 2999–3008 (2010).
  • Peters AH , SchubelerD. Methylation of histones: playing memory with DNA. Curr. Opin. Cell Biol.17 , 230–238 (2005).
  • Ng SS , YueWW, OppermannU, KloseRJ. Dynamic protein methylation in chromatin biology. Cell Mol. Life Sci.66(3) , 407–422 (2009).
  • Gupta S , KimSY, ArtisSet al. Histone methylation regulates memory formation. J. Neurosci. 30 , 3589–3599 (2010).
  • Tachibana M , SugimotoK, NozakiMet al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16 , 1779–1791 (2002).
  • Maze I , CovingtonHE 3rd, Dietz DM et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science327 , 213–216 (2010).
  • Schaefer A , SampathSC, IntratorAet al. Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron 64 , 678–691 (2009).
  • Jiang Y , JakovcevskiM, BharadwajRet al. Setdb1 histone methyltransferase regulates mood-related behaviors and expression of the NMDA receptor subunit NR2B. J. Neurosci. 30 , 7152–7167 (2010).
  • Lonze BE , GintyDD. Function and regulation of CREB family transcription factors in the nervous system. Neuron35 , 605–623 (2002).
  • Monsey MS , OtaKT, AkingbadeIF, HongES, SchafeGE. Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLoS ONE6 , e19958 (2011).
  • Miller CA , CampbellSL, SweattJD. DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiol. Learn Mem.89 , 599–603 (2008).
  • Cartharius K , FrechK, GroteKet al. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21 , 2933–2942 (2005).
  • Levenson JM , RothTL, LubinFDet al. Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J. Biol. Chem. 281 , 15763–15773 (2006).
  • Ma DK , GuoJU, MingGL, SongH. DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle8 , 1526–1531 (2009).
  • Martinowich K , HattoriD, WuHet al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302 , 890–893 (2003).
  • Miller CA , GavinCF, WhiteJAet al. Cortical DNA methylation maintains remote memory. Nat. Neurosci. 13 , 664–666 (2010).
  • Walton M , HendersonC, Mason-ParkerSet al. Immediate early gene transcription and synaptic modulation. J. Neurosci. Res. 58 , 96–106 (1999).
  • Mitterdorfer J , FroschmayrM, GrabnerM, MoebiusFF, GlossmannH, StriessnigJ. Identification of PKA phosphorylation sites in the carboxyl terminus of L-type calcium channel α 1 subunits. Biochemistry35 , 9400–9406 (1996).
  • Vecsey CG , HawkJD, LattalKMet al. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J. Neurosci. 27 , 6128–6140 (2007).
  • Bousiges O , de Vasconcelos AP, Neidl R et al. Spatial memory consolidation is associated with induction of several lysine-acetyltransferase (histone acetyltransferase) expression levels and H2B/H4 acetylation-dependent transcriptional events in the rat hippocampus. Neuropsychopharmacology35 , 2521–2537 (2010).
  • Koshibu K , GraffJ, MansuyIM. Nuclear protein phosphatase-1: an epigenetic regulator of fear memory and amygdala long-term potentiation. Neuroscience173 , 30–36 (2010).
  • Meffert MK , ChangJM, WiltgenBJ, FanselowMS, BaltimoreD. NF-κB functions in synaptic signaling and behavior. Nat. Neurosci.6 , 1072–1078 (2003).
  • Ahn HJ , HernandezCM, LevensonJM, LubinFD, LiouHC, SweattJD. c-Rel, an NF-κB family transcription factor, is required for hippocampal long-term synaptic plasticity and memory formation. Learn Mem.15 , 539–549 (2008).
  • Thomson S , ClaytonAL, MahadevanLC. Independent dynamic regulation of histone phosphorylation and acetylation during immediate-early gene induction. Mol. Cell8 , 1231–1241 (2001).
  • Yeh SH , LinCH, GeanPW. Acetylation of nuclear factor-κB in rat amygdala improves long-term but not short-term retention of fear memory. Mol. Pharmacol.65 , 1286–1292 (2004).
  • Yang XD , TajkhorshidE, ChenLF. Functional interplay between acetylation and methylation of the RelA subunit of NF-κB. Mol. Cell Biol.30 , 2170–2180 (2010).
  • Chen L , FischleW, VerdinE, GreeneWC. Duration of nuclear NF-κB action regulated by reversible acetylation. Science293 , 1653–1657 (2001).
  • Rothgiesser KM , FeyM, HottigerMO. Acetylation of p65 at lysine 314 is important for late NF-κB-dependent gene expression. BMC Genomics11 , 22 (2010).
  • Weaver IC , CervoniN, ChampagneFAet al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7 , 847–854 (2004).
  • McGowan PO , SasakiA, D‘AlessioACet al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci. 12 , 342–348 (2009).
  • Lucassen PJ , MullerMB, HolsboerFet al. Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. Am. J. Pathol. 158 , 453–468 (2001).
  • Watanabe Y , GouldE, McEwenBS. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res.588 , 341–345 (1992).
  • Mill J , TangT, KaminskyZet al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am. J. Hum. Genet. 82 , 696–711 (2008).
  • Rapoport JL , AddingtonAM, FrangouS, PsychMR. The neurodevelopmental model of schizophrenia: update 2005. Mol. Psychiatry10 , 434–449 (2005).
  • Rudge JS , MatherPE, PasnikowskiEMet al. Endogenous BDNF protein is increased in adult rat hippocampus after a kainic acid induced excitotoxic insult but exogenous BDNF is not neuroprotective. Exp. Neurol. 149 , 398–410 (1998).
  • Jones SR , FernyhoughC. A new look at the neural diathesis – stress model of schizophrenia: the primacy of social-evaluative and uncontrollable situations. Schizophr. Bull.33 , 1171–1177 (2007).
  • Pollin W , CardonPV Jr, Kety SS. Effects of amino acid feedings in schizophrenic patients treated with iproniazid. Science133 , 104–105 (1961).
  • Guidotti A , AutaJ, DavisJMet al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch. Gen. Psychiatry 57 , 1061–1069 (2000).
  • Grayson DR , ChenY, CostaEet al. The human reelin gene: transcription factors (+), repressors (-) and the methylation switch (+/-) in schizophrenia. Pharmacol. Ther. 111 , 272–286 (2006).
  • Reid MA , StoeckelLE, WhiteDMet al. Assessments of function and biochemistry of the anterior cingulate cortex in schizophrenia. Biol. Psychiatry 68 , 625–633 (2010).
  • Lewis DA . GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Res. Rev.31 , 270–276 (2000).
  • Abdolmaleky HM , ChengKH, RussoAet al. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am. J. Med. Genet. B Neuropsychiatr. Genet. 134B , 60–66 (2005).
  • Ruzicka WB , ZhubiA, VeldicM, GraysonDR, CostaE, GuidottiA. Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Mol. Psychiatry12 , 385–397 (2007).
  • Tamura Y , KunugiH, OhashiJ, HohjohH. Epigenetic aberration of the human REELIN gene in psychiatric disorders. Mol. Psychiatry12(6) , 519, 593–600 (2007).
  • Roth TL , LubinFD, SodhiM, KleinmanJE. Epigenetic mechanisms in schizophrenia. Biochim. Biophys. Acta1790 , 869–877 (2009).
  • Huang HS , AkbarianS. GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia. PLoS ONE2 , e809 (2007).
  • Dong H , CsernanskyCA, GoicoB, CsernanskyJG. Hippocampal neurogenesis follows kainic acid-induced apoptosis in neonatal rats. J. Neurosci.23 , 1742–1749 (2003).
  • Tremolizzo L , DoueiriMS, DongEet al. Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol. Psychiatry 57 , 500–509 (2005).
  • Kelley AE . Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron44 , 161–179 (2004).
  • Penton RE , LesterRA. Cellular events in nicotine addiction. Semin. Cell Dev. Biol.20 , 418–431 (2009).
  • Kenny PJ , FileSE, RattrayM. Acute nicotine decreases, and chronic nicotine increases the expression of brain-derived neurotrophic factor mRNA in rat hippocampus. Brain Res. Mol.85 , 234–238 (2000).
  • Russo SJ , DietzDM, DumitriuD, MorrisonJH, MalenkaRC, NestlerEJ. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci.33 , 267–276 (2010).
  • Berton O , McClungCA, DileoneRJet al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311 , 864–868 (2006).
  • Brami-Cherrier K , ValjentE, HerveDet al. Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J. Neurosci. 25 , 11444–11454 (2005).
  • Oliveira AM , WoodMA, McDonoughCB, AbelT. Transgenic mice expressing an inhibitory truncated form of p300 exhibit long-term memory deficits. Learn Mem.14 , 564–572 (2007).
  • Fleischmann A , HvalbyO, JensenVet al. Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS. J. Neurosci 23 , 9116–9122 (2003).
  • Jones MW , ErringtonML, FrenchPJet al. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat. Neurosci. 4 , 289–296 (2001).
  • Haettig J , StefankoDP, MultaniML, FigueroaDX, McQuownSC, WoodMA. HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner. Learn Mem.18 , 71–79 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.