466
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic and Epigenomic Mechanisms Shape Sarcoma and Other Mesenchymal Tumor Pathogenesis

Pages 715-732 | Published online: 25 Nov 2011

References

  • Steinbeck J . Of Mice and Men. The Modern Library, NY, USA (1937).
  • Burdach S , PlehmS, UnlandR et al. Epigenetic maintenance of stemness and malignancy in peripheral neuroectodermal tumors by EZH2. Cell Cycle 8(13) , 1991–1996 (2009).
  • Cironi L , ProveroP, RiggiN et al. Epigenetic features of human mesenchymal stem cells determine their permissiveness for induction of relevant transcriptional changes by SYT-SSX1. PLoS ONE 4(11) , e7904 (2009).
  • Matushansky I , HernandoE, SocciND et al. Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J. Clin. Invest. 117(11) , 3248–3257 (2007).
  • Mohseny AB , SzuhaiK, RomeoS et al. Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2. J. Pathol. 219(3) , 294–305 (2009).
  • Ren YX , FinckensteinFG, AbduevaDA et al. Mouse mesenchymal stem cells expressing PAX-FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res. 68(16) , 6587–6597 (2008).
  • Richter GH , PlehmS, FasanA, RosslerS, UnlandR, Bennani-BaitiIM et al. EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation. Proc. Natl Acad. Sci. USA 106(13) , 5324–5329 (2009).
  • Riggi N , CironiL, ProveroP et al. Development of Ewing‘s sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res. 65(24) , 11459–11468 (2005).
  • Riggi N , CironiL, ProveroP et al. Expression of the FUS-CHOP fusion protein in primary mesenchymal progenitor cells gives rise to a model of myxoid liposarcoma. Cancer Res. 66(14) , 7016–7023 (2006).
  • Riggi N , SuvaML, SuvaD et al. EWS-FLI-1 expression triggers a Ewing‘s sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res. 68(7) , 2176–2185 (2008).
  • Tolar J , NautaAJ, OsbornMJ et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25(2) , 371–379 (2007).
  • Wei Y , ChenYH, LiLY et al. CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat. Cell Biol. 13(1) , 87–94 (2011).
  • Von Levetzow C , JiangX, GwyeY et al. Modeling initiation of Ewing sarcoma in human neural crest cells. PLoS ONE 6(4) , e19305 (2011).
  • World Heath Organization. World Health Organization Classification of Tumors: Pathology and Genetics of Tumors of Soft Tissue and Bone. Fletcher CDM, Unni KK, Mertens F (Eds). IARC Press, Lyon, France (2002).
  • Berger M , MuraroM, FagioliF, FerrariS. Osteosarcoma derived from donor stem cells carrying the Norrie‘s disease gene. N. Engl. J. Med.359(23) , 2502–2504 (2008).
  • Perrot P , RousseauJ, BouffautAL et al. Safety concern between autologous fat graft, mesenchymal stem cell and osteosarcoma recurrence. PLoS ONE 5(6) , e10999 (2010).
  • Bielack SS , RerinJS, DickerhoffR et al. Osteosarcoma after allogeneic bone marrow transplantation. A report of four cases from the Cooperative Osteosarcoma Study Group (COSS). Bone Marrow Transplant. 31(5) , 353–359 (2003).
  • Mohseny AB , HogendoornPC. Concise review: mesenchymal tumors: when stem cells go mad. Stem Cells29(3) , 397–403 (2011).
  • Li Y , MengG, GuoQN. Changes in genomic imprinting and gene expression associated with transformation in a model of human osteosarcoma. Exp. Mol. Pathol.84(3) , 234–239 (2008).
  • Wild L , FunesJM, BoshoffC, FlanaganJM. In vitro transformation of mesenchymal stem cells induces gradual genomic hypomethylation. Carcinogenesis31(10) , 1854–1862 (2010).
  • Baird K , DavisS, AntonescuCR et al. Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Res. 65(20) , 9226–9235 (2005).
  • Henderson SR , GuilianoD, PresneauN et al. A molecular map of mesenchymal tumors. Genome Biol. 6(9) , R76 (2005).
  • Bennani-Baiti B , Bennani-BaitiIM. Gene symbol precision. Gene doi:10.1016/j.gene.2011.09.035 (2011) (Epub ahead of print).
  • Sievers S , FritzschC, LehnhardtM et al. Hypermethylation of the APC promoter but lack of APC mutations in myxoid/round-cell liposarcoma. Int. J. Cancer 119(10) , 2347–2352 (2006).
  • Prosperi JR , GossKH. Wnt pathway-independent activities of the APC tumor suppressor. In: Tumor suppressors. Nguyen S (Ed.). Nova Science Publishers, Inc., NY, USA, 105–132 (2011).
  • Vijayakumar S , LiuG, RusIA et al. High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/β-catenin target gene, CDC25A. Cancer Cell 19(5) , 601–612 (2011).
  • Yu Y , ZengP, XiongJ, LiuZ, BergerSL, MerlinoG. Epigenetic drugs can stimulate metastasis through enhanced expression of the pro-metastatic Ezrin gene. PLoS ONE5(9) , e12710 (2010).
  • Khanna C , KhanJ, NguyenP et al. Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res. 61(9) , 3750–3759 (2001).
  • Khanna C , WanX, BoseS et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat. Med. 10(2) , 182–186 (2004).
  • Yu Y , KhanJ, KhannaC, HelmanL, MeltzerPS, MerlinoG. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein six-1 as key metastatic regulators. Nat. Med.10(2) , 175–181 (2004).
  • Machado I , NavarroS, GinerF, AlberghiniM, BertoniF, Llombart-BoschA. Ezrin immunohistochemical expression in chondrosarcomas, osteosarcomas and Ewing sarcoma family of tumors. Virchows Arch.457(1) , 87–89 (2010).
  • Krishnan K , BruceB, HewittS, ThomasD, KhannaC, HelmanLJ. Ezrin mediates growth and survival in Ewing‘s sarcoma through the AKT/mTOR, but not the MAPK, signaling pathway. Clin. Exp. Metastasis23(3–4) , 227–236 (2006).
  • Goldstein M , MellerI, Orr-UrtregerA. FGFR1 overexpression in primary rhabdomyosarcoma tumors is associated with hypomethylation of a 5´ CpG island and abnormal expression of the AKT1, NOG, and BMP4 genes. Genes Chromosomes Cancer46(11) , 1028–1038 (2007).
  • Peters KG , WernerS, ChenG, WilliamsLT. Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development114(1) , 233–243 (1992).
  • Shaoul E , Reich-SlotkyR, BermanB, RonD. Fibroblast growth factor receptors display both common and distinct signaling pathways. Oncogene10(8) , 1553–1561 (1995).
  • Thiery JP . Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer2(6) , 442–454 (2002).
  • Kamura S , MatsumotoY, FukushiJI et al. Basic fibroblast growth factor in the bone microenvironment enhances cell motility and invasion of Ewing‘s sarcoma family of tumours by activating the FGFR1-PI3K-Rac1 pathway. Br. J. Cancer 103(3) , 370–381 (2010).
  • Al-Romaih K , SadikovicB, YoshimotoM, WangY, ZielenskaM, SquireJA. Decitabine-induced demethylation of 5´ CpG island in GADD45A leads to apoptosis in osteosarcoma cells. Neoplasia10(5) , 471–480 (2008).
  • Al-Romaih K , SomersGR, BayaniJ et al. Modulation by decitabine of gene expression and growth of osteosarcoma U2OS cells in vitro and in xenografts: identification of apoptotic genes as targets for demethylation. Cancer Cell Int. 7 , 14 (2007).
  • Esteller M , HermanJG. Generating mutations but providing chemosensitivity: the role of O6-methylguanine DNA methyltransferase in human cancer. Oncogene23(1) , 1–8 (2004).
  • Kim JI , SuhJT, ChoiKU et al. Inactivation of O6-methylguanine-DNA methyltransferase in soft tissue sarcomas: association with K-ras mutations. Hum. Pathol. 40(7) , 934–941 (2009).
  • Hou P , JiM, YangB et al. Quantitative analysis of promoter hypermethylation in multiple genes in osteosarcoma. Cancer 106(7) , 1602–1609 (2006).
  • Kawaguchi K , OdaY, SaitoT et al. DNA hypermethylation status of multiple genes in soft tissue sarcomas. Mod. Pathol. 19(1) , 106–114 (2006).
  • Seidel C , SchagdarsurenginU, BlumkeK et al. Frequent hypermethylation of MST1 and MST2 in soft tissue sarcoma. Mol. Carcinog. 46(10) , 865–871 (2007).
  • Jimenez-Velasco A , Roman-GomezJ, AgirreX et al. Downregulation of the large tumor suppressor 2 (LATS2/KPM) gene is associated with poor prognosis in acute lymphoblastic leukemia. Leukemia 19(12) , 2347–2350 (2005).
  • Takahashi Y , MiyoshiY, TakahataC et al. Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin. Cancer Res. 11(4) , 1380–1385 (2005).
  • St John MA , TaoW, FeiX et al. Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat. Genet. 21(2) , 182–186 (1999).
  • Park YB , ParkMJ, KimuraK, ShimizuK, LeeSH, YokotaJ. Alterations in the INK4a/ARF locus and their effects on the growth of human osteosarcoma cell lines. Cancer Genet. Cytogenet.133(2) , 105–111 (2002).
  • Benassi MS , MolendiniL, GamberiG et al. Involvement of INK4A gene products in the pathogenesis and development of human osteosarcoma. Cancer 92(12) , 3062–3067 (2001).
  • He M , AisnerS, BeneveniaJ, PattersonF, HarrisonLE, HameedM. Epigenetic alteration of p16INK4a gene in dedifferentiation of liposarcoma. Pathol. Res. Pract.205(6) , 386–394 (2009).
  • Linardic CM , NainiS, HerndonJE, 2nd, Kesserwan C, Qualman SJ, Counter CM. The PAX3-FKHR fusion gene of rhabdomyosarcoma cooperates with loss of p16INK4A to promote bypass of cellular senescence. Cancer Res.67(14) , 6691–6699 (2007).
  • Chen B , HeL, SavellVH, JenkinsJJ, ParhamDM. Inhibition of the interferon-γ/signal transducers and activators of transcription (STAT) pathway by hypermethylation at a STAT-binding site in the p21WAF1 promoter region. Cancer Res.60(12) , 3290–3298 (2000).
  • Ciccarelli C , MaramponF, ScoglioA et al. p21WAF1 expression induced by MEK/ERK pathway activation or inhibition correlates with growth arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells. Mol. Cancer 4 , 41 (2005).
  • Perrone F , TabanoS, ColomboF et al. p15INK4b, p14ARF, and p16INK4a inactivation in sporadic and neurofibromatosis type 1-related malignant peripheral nerve sheath tumors. Clin. Cancer Res. 9(11) , 4132–4138 (2003).
  • Seidel C , BartelF, RastetterM et al. Alterations of cancer-related genes in soft tissue sarcomas: hypermethylation of RASSF1A is frequently detected in leiomyosarcoma and associated with poor prognosis in sarcoma. Int. J. Cancer 114(3) , 442–447 (2005).
  • Tsuchiya T , SekineK, HinoharaS, NamikiT, NoboriT, KanekoY. Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma. Cancer Genet. Cytogenet.120(2) , 91–98 (2000).
  • Carrasco DR , FentonT, SukhdeoK et al. The PTEN and INK4A/ARF tumor suppressors maintain myelolymphoid homeostasis and cooperate to constrain histiocytic sarcoma development in humans. Cancer Cell 9(5) , 379–390 (2006).
  • Leslie NR , FotiM. Non-genomic loss of PTEN function in cancer: not in my genes. Trends Pharmacol. Sci.32(3) , 131–140 (2011).
  • Alimonti A , CarracedoA, ClohessyJG et al. Subtle variations in PTEN dose determine cancer susceptibility. Nat. Genet. 42(5) , 454–458 (2010).
  • Salmena L , CarracedoA, PandolfiPP. Tenets of PTEN tumor suppression. Cell133(3) , 403–414 (2008).
  • Kawaguchi K , OdaY, SaitoT et al. Genetic and epigenetic alterations of the PTEN gene in soft tissue sarcomas. Hum. Pathol. 36(4) , 357–363 (2005).
  • Lu J , JeongHW, KongN et al. Stem cell factor SALL4 represses the transcriptions of PTEN and SALL1 through an epigenetic repressor complex. PLoS ONE 4(5) , e5577 (2009).
  • Su L , ChengH, SampaioAV, NielsenTO, UnderhillTM. EGR1 reactivation by histone deacetylase inhibitors promotes synovial sarcoma cell death through the PTEN tumor suppressor. Oncogene29(30) , 4352–4361 (2010).
  • Miwa S , SugimotoN, ShiraiT et al. Caffeine activates tumor suppressor PTEN in sarcoma cells. Int. J. Oncol. 39(2) , 465–472 (2011).
  • Liu L , TommasiS, LeeDH, DammannR, PfeiferGP. Control of microtubule stability by the RASSF1A tumor suppressor. Oncogene22(50) , 8125–8136 (2003).
  • Song MS , SongSJ, AyadNG et al. The tumour suppressor RASSF1A regulates mitosis by inhibiting the APC-Cdc20 complex. Nat. Cell Biol. 6(2) , 129–137 (2004).
  • Donninger H , VosMD, ClarkGJ. The RASSF1A tumor suppressor. J. Cell Sci.120(Pt 18) , 3163–3172 (2007).
  • Pfeifer GP , DammannR. Methylation of the tumor suppressor gene RASSF1A in human tumors. Biochemistry (Mosc.)70(5) , 576–583 (2005).
  • Agathanggelou A , CooperWN, LatifF. Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res.65(9) , 3497–3508 (2005).
  • Dammann R , SchagdarsurenginU, SeidelC et al. The tumor suppressor RASSF1A in human carcinogenesis: an update. Histol. Histopathol. 20(2) , 645–663 (2005).
  • Harada K , ToyookaS, MaitraA et al. Aberrant promoter methylation and silencing of the RASSF1A gene in pediatric tumors and cell lines. Oncogene 21(27) , 4345–4349 (2002).
  • Avigad S , ShuklaS, NaumovI et al. Aberrant methylation and reduced expression of RASSF1A in Ewing sarcoma. Pediatr. Blood Cancer 53(6) , 1023–1028 (2009).
  • Numoto K , YoshidaA, SugiharaS et al. Frequent methylation of RASSF1A in synovial sarcoma and the anti-tumor effects of 5-aza-2´-deoxycytidine against synovial sarcoma cell lines. J. Cancer Res. Clin. Oncol. 136(1) , 17–25 (2010).
  • Lim S , YangMH, ParkJH et al. Inactivation of the RASSF1A in osteosarcoma. Oncol. Rep. 10(4) , 897–901 (2003).
  • Polakis P . The many ways of Wnt in cancer. Curr. Opin. Genet. Dev.17(1) , 45–51 (2007).
  • Aguilera O , FragaMF, BallestarE et al. Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene 25(29) , 4116–4121 (2006).
  • Caldwell GM , JonesC, GensbergK et al. The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer Res. 64(3) , 883–888 (2004).
  • Elston MS , GillAJ, ConaglenJV et al. Wnt pathway inhibitors are strongly down-regulated in pituitary tumors. Endocrinology 149(3) , 1235–1242 (2008).
  • Mazieres J , HeB, YouL et al. Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer. Cancer Res. 64(14) , 4717–4720 (2004).
  • Roman-Gomez J , CordeuL, AgirreX et al. Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood 109(8) , 3462–3469 (2007).
  • Taniguchi H , YamamotoH, HirataT et al. Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers. Oncogene 24(53) , 7946–7952 (2005).
  • Ai L , TaoQ, ZhongS et al. Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer. Carcinogenesis 27(7) , 1341–1348 (2006).
  • Kansara M , TsangM, KodjabachianL et al. Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J. Clin. Invest. 119(4) , 837–851 (2009).
  • Rubin EM , GuoY, TuK, XieJ, ZiX, HoangBH. Wnt inhibitory factor 1 decreases tumorigenesis and metastasis in osteosarcoma. Mol. Cancer Ther.9(3) , 731–741 (2010).
  • Jung CK , JungJH, LeeA et al. Diagnostic use of nuclear β-catenin expression for the assessment of endometrial stromal tumors. Mod. Pathol. 21(6) , 756–763 (2008).
  • Kildal W , PradhanM, AbelerVM, KristensenGB, DanielsenHE. β-catenin expression in uterine sarcomas and its relation to clinicopathological parameters. Eur. J. Cancer45(13) , 2412–2417 (2009).
  • Ng TL , GownAM, BarryTS et al. Nuclear β-catenin in mesenchymal tumors. Mod. Pathol. 18(1) , 68–74 (2005).
  • Huntzinger E , IzaurraldeE. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet.12(2) , 99–110 (2011).
  • Farazi TA , SpitzerJI, MorozovP, TuschlT. miRNAs in human cancer. J. Pathol.223(2) , 102–115 (2011).
  • Toyota M , SuzukiH, SasakiY et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res. 68(11) , 4123–4132 (2008).
  • Roman-Gomez J , AgirreX, Jimenez-VelascoA et al. Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J. Clin. Oncol. 27(8) , 1316–1322 (2009).
  • Lujambio A , CalinGA, VillanuevaA et al. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl Acad. Sci. USA 105(36) , 13556–13561 (2008).
  • Chim CS , WongKY, QiY et al. Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis 31(4) , 745–750 (2010).
  • Li Y , GuessousF, ZhangY et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 69(19) , 7569–7576 (2009).
  • Vogt M , MundingJ, GrunerM et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch. 458(3) , 313–322 (2011).
  • He C , XiongJ, XuX et al. Functional elucidation of miR-34 in osteosarcoma cells and primary tumor samples. Biochem. Biophys. Res. Commun. 388(1) , 35–40 (2009).
  • Wang H , GarzonR, SunH et al. NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14(5) , 369–381 (2008).
  • Maire G , MartinJW, YoshimotoM, Chilton-MacneillS, ZielenskaM, SquireJA. Analysis of miRNA-gene expression-genomic profiles reveals complex mechanisms of microRNA deregulation in osteosarcoma. Cancer Genet.204(3) , 138–146 (2011).
  • Riggi N , Suva Ml, De Vito C et al. EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells. Genes Dev.24(9) , 916–932 (2010).
  • De Vito C , RiggiN, Suva Ml et al. Let-7a is a direct EWS-FLI-1 target implicated in Ewing‘s sarcoma development. PLoS ONE6(8) , e23592 (2011).
  • Fitzgerald MP , GourroncF, TeohML et al. Human chondrosarcoma cells acquire an epithelial-like gene expression pattern via an epigenetic switch: evidence for mesenchymal-epithelial transition during sarcomagenesis. Sarcoma 2011 , 598218 (2011).
  • Bui C , OuzzineM, TalhaouiI et al. Epigenetics: methylation-associated repression of heparan sulfate 3-O-sulfotransferase gene expression contributes to the invasive phenotype of H-EMC-SS chondrosarcoma cells. FASEB J. 24(2) , 436–450 (2010).
  • Chan TA , GlocknerS, YiJM et al. Convergence of mutation and epigenetic alterations identifies common genes in cancer that predict for poor prognosis. PLoS Med. 5(5) , e114 (2008).
  • Fang F , TurcanS, RimnerA et al. Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci. Transl. Med. 3(75) , 75ra25 (2011).
  • Stefanska B , HuangJ, BhattacharyyaB et al. Definition of the landscape of promoter DNA hypomethylation in liver cancer. Cancer Res. 71(17) , 5891–5903 (2011).
  • Ban J , Bennani-BaitiIM, KauerM et al. EWS-FLI1 suppresses NOTCH-activated p53 in Ewing‘s sarcoma. Cancer Res. 68(17) , 7100–7109 (2008).
  • D‘Arcy P , MaruwgeW, Ryan Ba, Brodin B. The oncoprotein SS18-SSX1 promotes p53 ubiquitination and degradation by enhancing HDM2 stability. Mol. Cancer Res.6(1) , 127–138 (2008).
  • Boeva V , SurdezD, GuillonN et al. De novo motif identification improves the accuracy of predicting transcription factor binding sites in ChIP-Seq data analysis. Nucleic Acids Res.38(11) , e126 (2010).
  • Erkizan HV , UverskyVN, ToretskyJA. Oncogenic partnerships: EWS-FLI1 protein interactions initiate key pathways of Ewing‘s sarcoma. Clin. Cancer Res.16(16) , 4077–4083 (2010).
  • De Bruijn DR , NapJP, Van Kessel AG. The (epi)genetics of human synovial sarcoma. Genes Chromosomes Cancer46(2) , 107–117 (2007).
  • De Bruijn DR , AllanderSV, Van Dijk AH et al. The synovial-sarcoma-associated SS18-SSX2 fusion protein induces epigenetic gene (de)regulation. Cancer Res.66(19) , 9474–9482 (2006).
  • Lubieniecka JM , De Bruijn DR, Su L et al. Histone deacetylase inhibitors reverse SS18-SSX-mediated Polycomb silencing of the tumor suppressor early growth response 1 in synovial sarcoma. Cancer Res.68(11) , 4303–4310 (2008).
  • Bernstein BE , MikkelsenTS, XieX et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2) , 315–326 (2006).
  • Ohm JE , McgarveyKM, YuX et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet. 39(2) , 237–242 (2007).
  • Ito T , OuchidaM, MorimotoY et al. Significant growth suppression of synovial sarcomas by the histone deacetylase inhibitor FK228 in vitro and in vivo. Cancer Lett. 224(2) , 311–319 (2005).
  • Strahl BD , AllisCD. The language of covalent histone modifications. Nature403(6765) , 41–45 (2000).
  • Jenuwein T , AllisCD. Translating the histone code. Science293(5532) , 1074–1080 (2001).
  • Hake SB , XiaoA, AllisCD. Linking the epigenetic ‘language‘ of covalent histone modifications to cancer. Br. J. Cancer96(Suppl. R31–R39) , (2007).
  • Linggi BE , BrandtSJ, SunZW, HiebertSW. Translating the histone code into leukemia. J. Cell. Biochem.96(5) , 938–950 (2005).
  • Cooper A , Van Doorninck J, Ji L et al. Ewing tumors that do not overexpress BMI-1 are a distinct molecular subclass with variant biology: a report from the Children‘s Oncology Group. Clin. Cancer Res.17(1) , 56–66 (2011).
  • Wu Z , MinL, ChenD et al. Overexpression of BMI-1 promotes cell growth and resistance to cisplatin treatment in osteosarcoma. PLoS ONE 6(2) , e14648 (2011).
  • Park IK , QianD, KielM et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423(6937) , 302–305 (2003).
  • Molofsky AV , PardalR, IwashitaT, ParkIK, ClarkeMF, MorrisonSJ. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature425(6961) , 962–967 (2003).
  • Lessard J , SauvageauG. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature423(6937) , 255–260 (2003).
  • Iwata S , TakenobuH, KageyamaH et al. Polycomb group molecule PHC3 regulates Polycomb complex composition and prognosis of osteosarcoma. Cancer Sci. 101(7) , 1646–1652 (2010).
  • Barco R , GarciaCB, EidJE. The synovial sarcoma-associated SYT-SSX2 oncogene antagonizes the Polycomb complex protein Bmi1. PLoS ONE4(4) , e5060 (2009).
  • Douglas D , HsuJH, HungL et al. BMI-1 promotes ewing sarcoma tumorigenicity independent of CDKN2A repression. Cancer Res. 68(16) , 6507–6515 (2008).
  • Hsu JH , LawlorER. BMI-1 suppresses contact inhibition and stabilizes YAP in Ewing sarcoma. Oncogene30(17) , 2077–2085 (2011).
  • Simon JA , KingstonRE. Mechanisms of Polycomb gene silencing: knowns and unknowns. Nat. Rev. Mol. Cell. Biol.10(10) , 697–708 (2009).
  • Simon JA , LangeCA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat. Res.647(1–2) , 21–29 (2008).
  • Ciarapica R , RussoG, VerginelliF et al. Deregulated expression of miR-26a and Ezh2 in rhabdomyosarcoma. Cell Cycle 8(1) , 172–175 (2009).
  • Ciarapica R , PezzulloM, VerginelliF et al. Ezh2 is up-regulated and correlates with Ki67 and CD31 expression in human pediatric rhabdomyosarcoma. Cancer Res. 70(Suppl. 8) , 3417 (2010).
  • Juan AH , DerfoulA, FengX et al. Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells. Genes Dev. 25(8) , 789–794 (2011).
  • Lukk M , KapusheskyM, NikkilaJ et al. A global map of human gene expression. Nat. Biotechnol. 28(4) , 322–324 (2010).
  • Xu F , LiX, WuL et al. Overexpression of the EZH2, RING1 and BMI1 genes is common in myelodysplastic syndromes: relation to adverse epigenetic alteration and poor prognostic scoring. Ann. Hematol. 90(6) , 643–653 (2011).
  • Guo BH , FengY, ZhangR et al. Bmi-1 promotes invasion and metastasis, and its elevated expression is correlated with an advanced stage of breast cancer. Mol. Cancer 10(1) , 10 (2011).
  • Hayami S , KellyJD, ChoHS et al. Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int. J. Cancer 128(3) , 574–586 (2011).
  • Cho HS , SuzukiT, DohmaeN et al. Demethylation of RB regulator MYPT1 by histone demethylase LSD1 promotes cell cycle progression in cancer cells. Cancer Res. 71(3) , 655–660 (2011).
  • Lv S , BuW, JiaoH et al. LSD1 is required for chromosome segregation during mitosis. Eur. J. Cell. Biol. 89(7) , 557–563 (2010).
  • Schildhaus H u, Riegel R, Hartmann W et al. Lysine-specific demethylase 1 is highly expressed in solitary fibrous tumors, synovial sarcomas, rhabdomyosarcomas, desmoplastic small round cell tumors, and malignant peripheral nerve sheath tumors. Hum. Pathol.42(11) , 1667–1675 (2011).
  • Bennani-Baiti IM , MachadoI, Llombart-BoschA, KovarH. Lysine-specific demethylase 1 (LSD1/KDM1A/AOF2) is expressed and is an epigenetic drug target in chondrosarcoma, Ewing‘s sarcoma, osteosarcoma, and rhabdomyosarcoma. Hum. Pathol. (2011) (In Press).
  • Kang MY , LeeBB, KimYH et al. Association of the SUV39H1 histone methyltransferase with the DNA methyltransferase 1 at mRNA expression level in primary colorectal cancer. Int. J. Cancer 121(10) , 2192–2197 (2007).
  • Kondo Y , ShenL, AhmedS et al. Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. PLoS ONE 3(4) , e2037 (2008).
  • Watanabe H , SoejimaK, YasudaH et al. Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells. Cancer Cell Int. 8 , 15 (2008).
  • Lee MH , JothiM, GudkovAV, MalAK. Histone methyltransferase KMT1A restrains entry of alveolar rhabdomyosarcoma cells into a myogenic differentiated state. Cancer Res.71(11) , 3921–3931 (2011).
  • Halevy O , NovitchBG, SpicerDB et al. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267(5200) , 1018–1021 (1995).
  • Parker SB , EicheleG, ZhangP et al. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267(5200) , 1024–1027 (1995).
  • Mal AK . Histone methyltransferase Suv39h1 represses MyoD-stimulated myogenic differentiation. EMBO J.25(14) , 3323–3334 (2006).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.