224
Views
3
CrossRef citations to date
0
Altmetric
Review

The Multidimensional Nature of Metabolic Syndrome in Schizophrenia: Lessons from Studies of One-Carbon Metabolism and DNA Methylation

, , &
Pages 317-329 | Published online: 11 Jun 2013

References

  • Saha S , ChantD, WelhamJ, McGrathJ. A systematic review of the prevalence of schizophrenia. PLoS Med.2(5) , e141 (2005).
  • Bushe CJ , TaylorM, HaukkaJ. Mortality in schizophrenia: a measurable clinical endpoint. J. Psychopharmacol.24(4 Suppl.) , 17–25 (2010).
  • Brown S . Excess mortality of schizophrenia. A meta-analysis. Br. J. Psychiatry171 , 502–508 (1997).
  • Auquier P , LanconC, RouillonF, LaderM. Mortality in schizophrenia. Pharmacoepidemiol. Drug Saf.16(12) , 1308–1312 (2007).
  • Correll CU . Balancing efficacy and safety in treatment with antipsychotics. CNS Spectr.12(10 Suppl. 17) , 12–20, 35 (2007).
  • Lieberman JA , StroupTS, McevoyJP et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N. Engl. J. Med. 353(12) , 1209–1223 (2005).
  • Citrome L . Risk–benefit analysis of available treatments for schizophrenia. Psychiatric Times1 , 27–30 (2007).
  • Hasnain M , FredricksonSK, ViewegWV, PandurangiAK. Metabolic syndrome associated with schizophrenia and atypical antipsychotics. Curr. Diab. Rep.10(3) , 209–216 (2010).
  • Roerig JL , SteffenKJ, MitchellJE. Atypical antipsychotic-induced weight gain: insights into mechanisms of action. CNS drugs25(12) , 1035–1059 (2011).
  • Meguid MM , FetissovSO, VarmaM et al. Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition 16(10) , 843–857 (2000).
  • Wirshing DA , WirshingWC, KysarL et al. Novel antipsychotics: comparison of weight gain liabilities. J. Clin. Psychiatry 60(6) , 358–363 (1999).
  • Rege S . Antipsychotic induced weight gain in schizophrenia:mechanisms and management. Aust. N. Z. J. Psychiatry42(5) , 369–381 (2008).
  • Holt RI , PevelerRC. Obesity, serious mental illness and antipsychotic drugs. Diabetes Obes. Metab.11(7) , 665–679 (2009).
  • Kohen D . Diabetes mellitus and schizophrenia: historical perspective. Br. J. Psychiatry Suppl.47 , S64–S66 (2004).
  • Moteshafi H , ZhornitskyS, BrunelleS, StipE. Comparing tolerability of olanzapine in schizophrenia and affective disorders: a meta-analysis. Drugs Saf.35(10) , 819–836 (2012).
  • Dasgupta A , SinghOP, RoutJK, SahaT, MandalS. Insulin resistance and metabolic profile in antipsychotic naive schizophrenia patients. Prog. Neuropsychopharmacol. Biol. Psychiatry34(7) , 1202–1207 (2010).
  • Verma SK , SubramaniamM, LiewA, PoonLY. Metabolic risk factors in drug-naive patients with first-episode psychosis. J. Clin. Psychiatry70(7) , 997–1000 (2009).
  • Ryan MC , FlanaganS, KinsellaU, KeelingF, ThakoreJH. The effects of atypical antipsychotics on visceral fat distribution in first episode, drug-naive patients with schizophrenia. Life Sci.74(16) , 1999–2008 (2004).
  • Thakore JH , MannJN, VlahosI, MartinA, ReznekR. Increased visceral fat distribution in drug-naive and drug-free patients with schizophrenia. Int. J. Obes. Relat. Metab. Disord.26(1) , 137–141 (2002).
  • Ryan MC , SharifiN, CondrenR, ThakoreJH. Evidence of basal pituitary-adrenal overactivity in first episode, drug naive patients with schizophrenia. Psychoneuroendocrinology29(8) , 1065–1070 (2004).
  • Baptista T , SerranoA, UzcateguiE et al. The metabolic syndrome and its constituting variables in atypical antipsychotic-treated subjects: comparison with other drug treatments, drug-free psychiatric patients, first-degree relatives and the general population in Venezuela. Schizophr. Res. 126(1–3) , 93–102 (2011).
  • Martins JM , TrincaA, AfonsoA et al. Psychoneuroendocrine characteristics of common obesity clinical subtypes. Int. J. Obes. Relat. Metab. Disord. 25(1) , 24–32 (2001).
  • Mukherjee S , SchnurDB, ReddyR. Family history of Type 2 diabetes in schizophrenic patients. Lancet1(8636) , 495 (1989).
  • Vancampfort D , KnapenJ, ProbstM et al. Considering a frame of reference for physical activity research related to the cardiometabolic risk profile in schizophrenia. Psychiatry Res. 177(3) , 271–279 (2010).
  • Nasrallah HA . Linkage of cognitive impairments with metabolic disorders in schizophrenia. Am. J. Psychiatry167(10) , 1155–1157 (2010).
  • Lindenmayer JP , KhanA, KaushikS et al. Relationship between metabolic syndrome and cognition in patients with schizophrenia. Schizophr. Res. 142(1–3) , 171–176 (2012).
  • Krebs MO , BellonA, MainguyG, JayTM, FrielingH. One-carbon metabolism and schizophrenia: current challenges and future directions. Trends Mol. Med.15(12) , 562–570 (2009).
  • van Winkel R , MoonsT, PeerboomsO et al. MTHFR genotype and differential evolution of metabolic parameters after initiation of a second generation antipsychotic: an observational study. Int. Clin. Psychopharmacol.25(5) , 270–276 (2010).
  • van Winkel R , RuttenBP, PeerboomsO, PeuskensJ, van Os J, De Hert M. MTHFR and risk of metabolic syndrome in patients with schizophrenia. Schizophr. Res.121(1–3) , 193–198 (2010).
  • Ellingrod VL , MillerDD, TaylorSF, MolineJ, HolmanT, KerrJ. Metabolic syndrome and insulin resistance in schizophrenia patients receiving antipsychotics genotyped for the methylenetetrahydrofolate reductase ( MTHFR) 677C/T and 1298A/C variants. Schizophr. Res.98(1–3) , 47–54 (2008).
  • Ellingrod VL , TaylorSF, DalackG et al. Risk factors associated with metabolic syndrome in bipolar and schizophrenia subjects treated with antipsychotics: the role of folate pharmacogenetics. J. Clin. Psychopharmacol. 32(2) , 261–265 (2012).
  • Obeid R , HerrmannW. Homocysteine and lipids: S-adenosyl methionine as a key intermediate. FEBS Lett.583(8) , 1215–1225 (2009).
  • Brown AS , BottiglieriT, SchaeferCA et al. Elevated prenatal homocysteine levels as a risk factor for schizophrenia. Arch. Gen. Psychiatry 64(1) , 31–39 (2007).
  • Ganji V , KafaiMR. Population reference values for plasma total homocysteine concentrations in US adults after the fortification of cereals with folic acid. Am. J. Clin. Nutr.84(5) , 989–994 (2006).
  • Enquobahrie DA , FeldmanHA, HoelscherDH et al. Serum homocysteine and folate concentrations among a US cohort of adolescents before and after folic acid fortification. Public Health Nutr. 15(10) , 1818–1826 (2012).
  • Pfeiffer CM , OsterlohJD, Kennedy-StephensonJ et al. Trends in circulating concentrations of total homocysteine among US adolescents and adults: findings from the 1991–1994 and 1999–2004 National Health and Nutrition Examination Surveys. Clin. Chem. 54(5) , 801–813 (2008).
  • Greenlund KJ , SrinivasanSR, XuJH et al. Plasma homocysteine distribution and its association with parental history of coronary artery disease in black and white children: the Bogalusa Heart Study. Circulation 99(16) , 2144–2149 (1999).
  • Quinlivan EP , McpartlinJ, McnultyH et al. Importance of both folic acid and vitamin B12 in reduction of risk of vascular disease. Lancet 359(9302) , 227–228 (2002).
  • Liaugaudas G , JacquesPF, SelhubJ, RosenbergIH, BostomAG. Renal insufficiency, vitamin B(12) status, and population attributable risk for mild hyperhomocysteinemia among coronary artery disease patients in the era of folic acid-fortified cereal grain flour. Arterioscler. Thromb. Vasc. Biol.21(5) , 849–851 (2001).
  • Muntjewerff JW , KahnRS, BlomHJ, den Heijer M. Homocysteine, methylenetetrahydrofolate reductase and risk of schizophrenia: a meta-analysis. Mol. Psychiatry11(2) , 143–149 (2006).
  • Neeman G , BlanaruM, BlochB et al. Relation of plasma glycine, serine, and homocysteine levels to schizophrenia symptoms and medication type. Am. J. Psychiatry 162(9) , 1738–1740 (2005).
  • Lipton SA , KimWK, ChoiYB et al. Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc. Natl Acad. Sci. USA 94(11) , 5923–5928 (1997).
  • Bouaziz N , AyediI, SidhomO et al. Plasma homocysteine in schizophrenia: determinants and clinical correlations in Tunisian patients free from antipsychotics. Psychiatry Res. 179(1) , 24–29 (2010).
  • Roffman JL , BrohawnDG, NitensonAZ, MacklinEA, SmollerJW, GoffDC. Genetic variation throughout the folate metabolic pathway influences negative symptom severity in schizophrenia. Schizophr Bull.39(2) , 330–338 (2013).
  • Ayesa-Arriola R , Perez-IglesiasR, Rodriguez-SanchezJM et al. Homocysteine and cognition in first-episode psychosis patients. Eur. Arch. Psychiatry Clin. Neurosci. 262(7) , 557–564 (2012).
  • Bicikova M , HamplR, HillM, RipovaD, MohrP, PutzZ. Neuro- and immunomodulatory steroids and other biochemical markers in drug-naive schizophrenia patients and the effect of treatment with atypical antipsychotics. Neuro Endocrinol. Lett.32(2) , 141–147 (2011).
  • Kale A , NaphadeN, SapkaleS et al. Reduced folic acid, vitamin B12 and docosahexaenoic acid and increased homocysteine and cortisol in never-medicated schizophrenia patients: implications for altered one-carbon metabolism. Psychiatry Res. 175(1–2) , 47–53 (2010).
  • Frankenburg FR . The role of one-carbon metabolism in schizophrenia and depression. Harv. Rev. Psychiatry15(4) , 146–160 (2007).
  • Hashimoto K , EngbergG, ShimizuE, NordinC, LindstromLH, IyoM. Reduced D-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients. Prog. Neuropsychopharmacol. Biol. Psychiatry29(5) , 767–769 (2005).
  • Bendikov I , NadriC, AmarS et al. A CSF and postmortem brain study of D-serine metabolic parameters in schizophrenia. Schizophr. Res. 90(1–3) , 41–51 (2007).
  • Sumiyoshi T , AnilAE, JinD, JayathilakeK, LeeM, MeltzerHY. Plasma glycine and serine levels in schizophrenia compared with normal controls and major depression: relation to negative symptoms. Int. J. Neuropsychopharmacol.7(1) , 1–8 (2004).
  • Ulrich CM , RobienK, SparksR. Pharmacogenetics and folate metabolism – a promising direction. Pharmacogenomics3(3) , 299–313 (2002).
  • Adkins DE , AbergK, McClayJL et al. Genomewide pharmacogenomic study of metabolic side effects to antipsychotic drugs. Mol. Psychiatry 16(3) , 321–332 (2011).
  • Vasilopoulos Y , SarafidouT, BagiatisV et al. Association between polymorphisms in MTHFR and APOA5 and metabolic syndrome in the Greek population. Genet. Test. Mol. Biomarkers 15(9) , 613–617 (2011).
  • Chen AR , ZhangHG, WangZP et al. C-reactive protein, vitamin B12 and C677T polymorphism of N-5,10-methylenetetrahydrofolate reductase gene are related to insulin resistance and risk factors for metabolic syndrome in Chinese population. Clin. Invest. Med. 33(5) , E290–E297 (2010).
  • Russo GT , Di Benedetto A, Alessi E et al. Mild hyperhomocysteinemia and the common C677T polymorphism of methylene tetrahydrofolate reductase gene are not associated with the metabolic syndrome in Type 2 diabetes. J. Endocrinol. Invest.29(3) , 201–207 (2006).
  • Uehara SK , RosaG. Association of homocysteinemia with high concentrations of serum insulin and uric acid in Brazilian subjects with metabolic syndrome genotyped for C677T polymorphism in the methylenetetrahydrofolate reductase gene. Nutr. Res.28(11) , 760–766 (2008).
  • Bondy B . Genetics in psychiatry: are the promises met? World J. Biol. Psychiatry12(2) , 81–88 (2011).
  • Ma DK , MarchettoMC, GuoJU, MingGL, GageFH, SongH. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat. Neurosci.13(11) , 1338–1344 (2010).
  • Sun J , MingGL, SongH. Epigenetic regulation of neurogenesis in the adult mammalian brain. Eur. J. Neurosci.33(6) , 1087–1093 (2011).
  • Parsons TE , SchmidtEJ, BoughnerJC, JamniczkyHA, MarcucioRS, HallgrimssonB. Epigenetic integration of the developing brain and face. Dev. Dyn.240(10) , 2233–2244 (2011).
  • Kohyama J , KojimaT, TakatsukaE et al. Epigenetic regulation of neural cell differentiation plasticity in the adult mammalian brain. Proc. Natl Acad. Sci. USA 105(46) , 18012–18017 (2008).
  • Lubin FD . Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation. Neurobiol. Learn. Mem.96(1) , 68–78 (2011).
  • Puckett RE , LubinFD. Epigenetic mechanisms in experience-driven memory formation and behavior. Epigenomics3(5) , 649–664 (2011).
  • Belden WJ , LewisZA, SelkerEU, LorosJJ, DunlapJC. CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency. PLoS Genet.7(7) , e1002166 (2011).
  • Lu SX , TobinEM. Chromatin remodeling and the circadian clock: Jumonji C-domain containing proteins. Plant Signal. Behav.6(6) , 810–814 (2011).
  • Hunter RG . Epigenetic effects of stress and corticosteroids in the brain. Front. Cell. Neurosci.6 , 18 (2012).
  • Graff J , ReiD, GuanJS et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483(7388) , 222–226 (2012).
  • Karpinski P , SzmidaE, MisiakB et al. Assessment of three epigenotypes in colorectal cancer by combined bisulfite restriction analysis. Mol. Carcinog. 51(12) , 1003–1008 (2012).
  • Kozlowska J , KarpinskiP, SzmidaE et al. Assessment of chromosomal imbalances in CIMP-high and CIMP-low/CIMP-0 colorectal cancers. Tumour Biol. 33(4) , 1015–1019 (2012).
  • Dempster E , VianaJ, PidsleyR, MillJ. Epigenetic studies of schizophrenia: progress, predicaments, and promises for the future. Schizophr. Bull.39(1) , 11–16 (2013).
  • Iwamoto K , KatoT. Epigenetic profiling in schizophrenia and major mental disorders. Neuropsychobiology60(1) , 5–11 (2009).
  • Mill J , TangT, KaminskyZ et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am. J. Hum. Genet. 82(3) , 696–711 (2008).
  • Gavin DP , SharmaRP. Histone modifications, DNA methylation, and schizophrenia. Neurosci. Biobehav. Rev.34(6) , 882–888 (2010).
  • Abdolmaleky HM , SmithCL, FaraoneSV et al. Methylomics in psychiatry: Modulation of gene-environment interactions may be through DNA methylation. Am. J. Med. Genet. B Neuropsychiatr. Genet. 127B(1) , 51–59 (2004).
  • Abdolmaleky HM , ChengKH, FaraoneSV et al. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum. Mol. Genet. 15(21) , 3132–3145 (2006).
  • Murphy BC , O‘ReillyRL, SinghSM. Site-specific cytosine methylation in S-COMT promoter in 31 brain regions with implications for studies involving schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet.133B(1) , 37–42 (2005).
  • Abdolmaleky HM , ChengKH, RussoA et al. Hypermethylation of the reelin ( RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am. J. Med. Genet. B Neuropsychiatr. Genet. 134B(1) , 60–66 (2005).
  • Lintas C , PersicoAM. Neocortical RELN promoter methylation increases significantly after puberty. Neuroreport21(2) , 114–118 (2010).
  • Grayson DR , JiaX, ChenY et al. Reelin promoter hypermethylation in schizophrenia. Proc. Natl Acad. Sci. USA 102(26) , 9341–9346 (2005).
  • Guidotti A , RuzickaW, GraysonDR et al. S-adenosyl methionine and DNA methyltransferase-1 mRNA overexpression in psychosis. Neuroreport 18(1) , 57–60 (2007).
  • Iwamoto K , BundoM, YamadaK et al. DNA methylation status of SOX10 correlates with its downregulation and oligodendrocyte dysfunction in schizophrenia. J. Neurosci. 25(22) , 5376–5381 (2005).
  • Abdolmaleky HM , YaqubiS, PapageorgisP et al. Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder. Schizophr. Res. 129(2–3) , 183–190 (2011).
  • Tolosa A , SanjuanJ, DagnallAM, MoltoMD, HerreroN, De Frutos R. FOXP2 gene and language impairment in schizophrenia: association and epigenetic studies. BMC Med. Genet.11 , 114 (2010).
  • Zhao C , WangF, PunFW et al. Epigenetic regulation on GABRB2 isoforms expression: developmental variations and disruptions in psychotic disorders. Schizophr. Res. 134(2–3) , 260–266 (2012).
  • Labonte B , TureckiG. The epigenetics of suicide: explaining the biological effects of early life environmental adversity. Arch. Suicide Res.14(4) , 291–310 (2010).
  • Ruzicka WB , ZhubiA, VeldicM, GraysonDR, CostaE, GuidottiA. Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Mol. Psychiatry12(4) , 385–397 (2007).
  • Veldic M , CarunchoHJ, LiuWS et al. DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc. Natl Acad. Sci. USA 101(1) , 348–353 (2004).
  • Rosa A , PicchioniMM, KalidindiS et al. Differential methylation of the X-chromosome is a possible source of discordance for bipolar disorder female monozygotic twins. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B(4) , 459–462 (2008).
  • Nohesara S , GhadirivasfiM, MostafaviS et al. DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. J. Psychiatr. Res. 45(11) , 1432–1438 (2011).
  • Nishioka M , BundoM, KoikeS et al. Comprehensive DNA methylation analysis of peripheral blood cells derived from patients with first-episode schizophrenia. J. Hum. Genet. 58(2) , 91–97 (2013).
  • Pidsley R , MillJ. Epigenetic studies of psychosis: current findings, methodological approaches, and implications for postmortem research. Biol. Psychiatry69(2) , 146–156 (2010).
  • Carrard A , SalzmannA, MalafosseA, KaregeF. Increased DNA methylation status of the serotonin receptor 5HTR1A gene promoter in schizophrenia and bipolar disorder. J. Affect. Disord.132(3) , 450–453 (2010).
  • Ghadirivasfi M , NohesaraS, AhmadkhanihaHR et al. Hypomethylation of the serotonin receptor type-2A gene ( HTR2A) at T102C polymorphic site in DNA derived from the saliva of patients with schizophrenia and bipolar disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 156B(5) , 536–545 (2011).
  • De Luca V , ViggianoE, DhootR, KennedyJL, WongAH. Methylation and QTDT analysis of the 5-HT2A receptor 102C allele: analysis of suicidality in major psychosis. J. Psychiatr. Res.43(5) , 532–537 (2009).
  • Melas PA , RogdakiM, OsbyU, SchallingM, LavebrattC, EkstromTJ. Epigenetic aberrations in leukocytes of patients with schizophrenia: association of global DNA methylation with antipsychotic drug treatment and disease onset. FASEB J.26(6) , 2712–2718 (2012).
  • Chen Y , ZhangJ, ZhangL, ShenY, XuQ. Effects of MAOA promoter methylation on susceptibility to paranoid schizophrenia. Hum. Genet.131(7) , 1081–1087 (2011).
  • McDonald PP , O‘ReillyR, SinghSM. Methylation analysis of the NOTCH4 – 25 C/T polymorphism in schizophrenia. Psychiatr. Genet.21(1) , 5–13 (2010).
  • Roffman JL , NitensonAZ, AgamY et al. A hypomethylating variant of MTHFR, 677C>T, blunts the neural response to errors in patients with schizophrenia and healthy individuals. PLoS ONE 6(9) , e25253 (2011).
  • Kordi-Tamandani DM , SahranavardR, TorkamanzehiA. DNA methylation and expression profiles of the brain-derived neurotrophic factor ( BDNF) and dopamine transporter ( DAT1) genes in patients with schizophrenia. Mol. Biol. Rep.39(12) , 10889–10893 (2012).
  • Kordi-Tamandani DM , DahmardehN, TorkamanzehiA. Evaluation of hypermethylation and expression pattern of GMR2, GMR5, GMR8, and GRIA3 in patients with schizophrenia. Gene515(1) , 163–166 (2012).
  • Petronis A , GottesmanII, KanP et al. Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr. Bull. 29(1) , 169–178 (2003).
  • Kuratomi G , IwamotoK, BundoM et al. Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Mol. Psychiatry 13(4) , 429–441 (2008).
  • Dempster EL , PidsleyR, SchalkwykLC et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum. Mol. Genet. 20(24) , 4786–4796 (2011).
  • Bruce KD , CagampangFR. Epigenetic priming of the metabolic syndrome. Toxicol. Mech. Methods21(4) , 353–361 (2011).
  • Lillycrop KA , BurdgeGC. Epigenetic changes in early life and future risk of obesity. Int. J. Obes. (Lond.)35(1) , 72–83 (2011).
  • Kirkbride JB , SusserE, KundakovicM, KresovichJK, Davey Smith G, Relton CL. Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects? Epigenomics4(3) , 303–315 (2012).
  • Sicard MN , ZaiCC, TiwariAK et al. Polymorphisms of the HTR2C gene and antipsychotic-induced weight gain: an update and meta-analysis. Pharmacogenomics 11(11) , 1561–1571 (2010).
  • Lott SA , BurghardtPR, BurghardtKJ, BlyMJ, GroveTB, EllingrodVL. The influence of metabolic syndrome, physical activity and genotype on catechol- O-methyl transferase promoter-region methylation in schizophrenia. Pharmacogenomics J. doi:10.1038/tpj.2012.6 (2012) (Epub ahead of print).
  • Burghardt KJ , PilsnerJR, BlyMJ, EllingrodVL. DNA methylation in schizophrenia subjects: gender and MTHFR 677C/T genotype differences. Epigenomics4(3) , 261–268 (2012).
  • Turcot V , TchernofA, DeshaiesY et al. LINE-1 methylation in visceral adipose tissue of severely obese individuals is associated with metabolic syndrome status and related phenotypes. Clin. Epigenetics 4(1) , 10 (2012).
  • Eren E , YeginA, YilmazN, HerkenH. Serum total homocystein, folate and vitamin B12 levels and their correlation with antipsychotic drug doses in adult male patients with chronic schizophrenia. Clin. Lab.56(11–12) , 513–518 (2010).
  • Sarandol A , KirliS, AkkayaC, OcakN, ErozE, SarandolE. Coronary artery disease risk factors in patients with schizophrenia: effects of short term antipsychotic treatment. J. Psychopharmacol.21(8) , 857–863 (2007).
  • Melas PA , RogdakiM, OsbyU, SchallingM, LavebrattC, EkstromTJ. Epigenetic aberrations in leukocytes of patients with schizophrenia: association of global DNA methylation with antipsychotic drug treatment and disease onset. FASEB J.26(6) , 2712–2718 (2012).
  • Dong E , NelsonM, GraysonDR, CostaE, GuidottiA. Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation. Proc. Natl Acad. Sci. USA105(36) , 13614–13619 (2008).
  • Dong E , ChenY, GavinDP, GraysonDR, GuidottiA. Valproate induces DNA demethylation in nuclear extracts from adult mouse brain. Epigenetics5(8) , 730–735 (2010).
  • Henderson DC , CopelandPM, NguyenDD et al. Homocysteine levels and glucose metabolism in non-obese, non-diabetic chronic schizophrenia. Acta Psychiatr. Scand. 113(2) , 121–125 (2006).
  • Akanji AO , OhaeriJU, Al-ShammriSA, FataniaHR. Associations of blood homocysteine concentrations in Arab schizophrenic patients. Clin. Biochem.40(13–14) , 1026–1031 (2007).
  • Vuksan-Cusa B , JakovljevicM, SagudM et al. Metabolic syndrome and serum homocysteine in patients with bipolar disorder and schizophrenia treated with second generation antipsychotics. Psychiatry Res. 189(1) , 21–25 (2011).
  • Vuksan-Cusa B , SagudM, JakovljevicM et al. Association between C-reactive protein and homocysteine with the subcomponents of metabolic syndrome in stable patients with bipolar disorder and schizophrenia. Nord. J. Psychiatry doi:10.3109/08039488.2012.745601 (2012) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.