95
Views
0
CrossRef citations to date
0
Altmetric
Research Highlights

Research Highlights: Highlights from the Latest Articles in Epigenomics

, &
Pages 251-254 | Published online: 11 Jun 2013

References

  • Hurst EA , HarbourJW, CorneliusLA. Ocular melanoma: a review and the relationship to cutaneous melanoma. Arch. Dermatol.139(8) , 1067–1073 (2003).
  • Singh AD , TurellME, TophamAK. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology118(9) , 1881–1885 (2011).
  • Chen X , HeD, DongXD et al. MicroRNA-124a is epigenetically regulated and acts as a tumor suppressor by controlling multiple targets in uveal melanoma. Invest. Ophthalmol. Vis. Sci. 54(3) , 2248–2256 (2013).
  • Deng G , KakarS, KimYS. MicroRNA-124a and microRNA-34b/c are frequently methylated in all histological types of colorectal cancer and polyps, and in the adjacent normal mucosa. Oncol. Lett.2(1) , 175–180 (2011).
  • Zheng F , LiaoYJ, CaiMY et al. The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut 61(2) , 278–289 (2012).
  • Deo M , YuJY, ChungKH, TippensM, TurnerDL. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev. Dyn.235(9) , 2538–2548 (2006).
  • Chang CJ , HungMC. The role of EZH2 in tumour progression. Br. J. Cancer.106(2) , 243–247 (2012).

References

  • Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet.13 , 484–492 (2012).
  • Baylin SB , JonesPA. A decade of exploring the cancer epigenome - biological and translational implications. Nat. Rev. Cancer11 , 726–734 (2011).
  • van der Velden PA , Metzelaar-BlokJA, BergmanW et al. Promoter hypermethylation: a common cause of reduced p16(IINK4α) expression in uveal melanoma. Cancer Res. 61 , 5303–5306 (2001).
  • Spugnardi M , TommasiS, DammannR et al. Epigenetic inactivation of Ras associated domain family protein 1 (RASSF1A) in malignant cutaneous melanoma. Cancer Res. 63 , 1639–1643 (2003).
  • van der Velden PA , ZuidervaartW, HurksMH et al. Expression profiling reveals that methylation of TIMP3 is involved in uveal melanoma development. Int. J. Cancer 106 , 472–479 (2003).
  • Furuta J , NobeyamaY, UmebayashiY et al. Silencing of peroxiredoxin 2 and aberrant methylation of 33 CpG islands in putative promoter regions in human malignant melanomas. Cancer Res. 66 , 6080–6086 (2006).
  • Gallagher WM , BerginOE, RaffertyM et al. Multiple markers for melanoma progression regulated by DNA methylation: insights from transcriptomic studies. Carcinogenesis 26 , 1856–1867 (2005).
  • Friedman EB , ShangS, de Miera EV et al. Serum microRNAs as biomarkers for recurrence in melanoma. J. Transl. Med.10 , 155–162 (2012).
  • Hofmann MA , GussmannF, FritscheA et al. Diagnostic value of melanoma inhibitory activity serum marker in the follow-up of patients with stage I or II cutaneous melanoma. Melanoma Res. 19 , 17–23 (2009).
  • Board RE , EllisonG, OrrMCM et al. Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma Phase II study. Br. J. Cancer 101 , 1724-1730 (2009).
  • Nigro CL , WangH, McHughA et al. Methylated tissue factor pathway inhibitor 2 (TFPI2) DNA in serum is a biomarker of metastatic melanoma. J. Invest. Derm. 133(5) , 1278–1285 (2012).
  • Kempaiah P , KisielW. Human tissue factor pathway inhibitor-2 induces caspase-mediated apoptosis in a human fibrosarcoma cell line. Apoptosis13 , 702–715 (2008).
  • Gessler F , VossV, SeifertV et al. Knockdown of TFPI 2 promotes migration and invasion of glioma cells. Neurosci. Lett. 497 , 49–54 (2011).
  • Bretz N , NoskeA, KellerS et al. CD24 promotes tumor cell invasion by suppressing tissue factor pathway inhibitor 2 (TFPI 2) in a c-Src-dependent fashion. Clin. Exp. Metastasis 29 , 27–38 (2012).
  • Nobeyama Y , Okoshi-TakadaE, FurutaJ et al. Silencing of tissue factor pathway inhibitor 2 gene in malignant melanomas. Int. J. Cancer 121 , 301–307 (2007).
  • Konduri SD , SrivenugopalKS, YanamandraN et al. Promoter methylation and silencing of the tissue factor pathway inhibitor 2 (TFPI 2), a gene encoding an inhibitor of matrix metalloproteinase in human glioma cells. Oncogene 22 , 4509–4516 (2003).
  • Sato N , ParkerAR, FukushimaN et al. Epigenetic inactivation of TFPI 2 as a common mechanism associated with growth and invasion of pancreatic ductal adenocarcinoma. Oncogene 24 , 850–858 (2005).

References

  • Cheung HH , LeeTL, RennertOM, ChanWY. DNA methylation of cancer genome. Birth Defects Res. C Embryo Today87(4) , 335–350 (2009).
  • Wilting RH , DannenbergJH. Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist. Updat.15(1–2) , 21–38 (2012).
  • Mutze K , LangerR, SchumacherF et al. DNA methyltransferase 1 as a predictive biomarker and potential therapeutic target for chemotherapy in gastric cancer. Eur. J. Cancer 47(12) , 1817–1825 (2011).
  • Boumber Y , IssaJP. Epigenetics in cancer: what‘s the future?. Oncology (Williston Park)25(3) , 220–226, 228 (2011).
  • Mund C , HackansonB, StresemannC, LubbertM, LykoF. Characterization of DNA demethylation effects induced by 5-Aza-2´-deoxycytidine in patients with myelodysplastic syndrome. Cancer Res.65(16) , 7086–7090 (2005).
  • Vijayaraghavalu S , LabhasetwarV. Efficacy of decitabine-loaded nanogels in overcoming cancer drug resistance is mediated via sustained DNA methyltransferase 1 (DNMT1) depletion. Cancer Lett.331(1) , 122–129 (2013).
  • Damaraju VL , MowlesD, YaoS et al. Role of human nucleoside transporters in the uptake and cytotoxicity of azacitidine and decitabine. Nucleosides Nucleotides Nucleic Acids 31(3) , 236–255 (2012).
  • Yallapu MM , JaggiM, ChauhanSC. Design and engineering of nanogels for cancer treatment. Drug Discov. Today16(9–10) , 457–463 (2011).

References

  • Zhang B , PanX, CobbGP, AndersonTA. MicroRNAs as oncogenes and tumor suppressors. Dev. Biol.302(1) , 1–12 (2007).
  • Nana-Sinkam SP , CroceCM. Clinical applications for microRNAs in cancer. Clin. Pharmacol. Ther.93(1) , 98–104 (2013).
  • Katayama Y , MaedaM, MiyaguchiK et al. Identification of pathogenesis-related microRNAs in hepatocellular carcinoma by expression profiling. Oncol. Lett. 4(4) , 817–823 (2012).
  • Guo J , MiaoY, XiaoB et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J. Gastroenterol. Hepatol. 24(4) , 652–657 (2009).
  • Toledo F , KrummelKA, LeeCJ et al. A mouse p53 mutant lacking the proline-rich domain rescues Mdm4 deficiency and provides insight into the Mdm2–Mdm4–p53 regulatory network. Cancer Cell 9(4) , 273–285 (2006).
  • Dar AA , MajidS, RittsteuerC et al. The role of miR-18b in MDM2-p53 pathway signaling and melanoma progression. J. Natl Cancer Inst. 105(6) , 433–442 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.