234
Views
0
CrossRef citations to date
0
Altmetric
Review

Genes, Assisted Reproductive Technology and Trans-illumination

&
Pages 331-340 | Published online: 11 Jun 2013

References

  • Cattanach BM , KirkM. Differential activity of maternally and paternally derived chromosome regions in mice. Nature315(6019) , 496–498 (1985).
  • McGrath J , SolterD. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell37(1) , 179–183 (1984).
  • Reik W , WalterJ. Genomic imprinting: parental influence on the genome. Nat. Rev. Genet.2(1) , 21–32 (2001).
  • Thorvaldsen JL , BartolomeiMS. SnapShot: imprinted gene clusters. Cell130(5) , 958 (2007).
  • Obata Y , Kaneko-IshinoT, KoideT et al. Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development 125(8) , 1553–1560 (1998).
  • Davis TL , YangGJ, McCarreyJR, BartolomeiMS. The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum. Mol. Genet.9(19) , 2885–2894 (2000).
  • Dean W , SantosF, ReikW. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin. Cell Dev. Biol.14(1) , 93–100 (2003).
  • Reik W , DeanW, WalterJ. Epigenetic reprogramming in mammalian development. Science293(5532) , 1089–1093 (2001).
  • Tahiliani M , KohKP, ShenY et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929) , 930–935 (2009).
  • Wossidlo M , ArandJ, SebastianoV et al. Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. Embo J. 29(11) , 1877–1888 (2010).
  • Morgan HD , DeanW, CokerHA, ReikW, Petersen-MahrtSK. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J. Biol. Chem.279(50) , 52353–52360 (2004).
  • Chotalia M , SmallwoodSA, RufN et al. Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev. 23(1) , 105–117 (2009).
  • Hackett JA , SenguptaR, ZyliczJJ et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339(6118) , 448–452 (2013).
  • Wossidlo M , NakamuraT, LepikhovK et al. 5-hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2 , 241 (2011).
  • Bartolomei MS , Ferguson-SmithAC. Mammalian genomic imprinting. Cold Spring Harb. Perspect. Biol.3(7) , pii: a002592 (2011).
  • Strogantsev R , Ferguson-SmithAC. Proteins involved in establishment and maintenance of imprinted methylation marks. Brief Funct. Genomics11(3) , 227–239 (2012).
  • Morgan HD , SantosF, GreenK, DeanW, ReikW. Epigenetic reprogramming in mammals. Hum. Mol. Genet.14(Suppl. 1) , R47–R58 (2005).
  • Kelsey G , FeilR. New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci.368(1609) , 20110336 (2013).
  • Messerschmidt DM , de Vries W, Ito M, Solter D, Ferguson-Smith A, Knowles BB. Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science335(6075) , 1499–1502 (2012).
  • Hackett JA , SuraniMA. DNA methylation dynamics during the mammalian life cycle. Philos. Trans. R. Soc. Lond. B Biol. Sci.368(1609) , 20110328 (2013).
  • Seisenberger S , PeatJR, HoreTA, SantosF, DeanW, ReikW. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos. Trans. R. Soc. Lond. B Biol. Sci.368(1609) , 20110330 (2013).
  • Horsthemke B , WagstaffJ. Mechanisms of imprinting of the Prader–Willi/Angelman region. Am J. Med. Genet. A146A(16) , 2041–2052 (2008).
  • Temple IK , ShieldJP. Transient neonatal diabetes, a disorder of imprinting. J. Med. Genet.39(12) , 872–875 (2002).
  • Bastepe M , FrohlichLF, LinglartA et al. Deletion of the NESP55 differentially methylated region causes loss of maternal GNAS imprints and pseudohypoparathyroidism type Ib. Nat. Genet. 37(1) , 25–27 (2005).
  • Ogata T , KagamiM, Ferguson-SmithAC. Molecular mechanisms regulating phenotypic outcome in paternal and maternal uniparental disomy for chromosome 14. Epigenetics3(4) , 181–187 (2008).
  • Han L , LeeDH, SzaboPE. CTCF is the master organizer of domain-wide allele-specific chromatin at the H19/Igf2 imprinted region. Mol. Cell Biol.28(3) , 1124–1135 (2008).
  • Reik W , BrownKW, SchneidH, Le Bouc Y, Bickmore W, Maher ER. Imprinting mutations in the Beckwith–Wiedemann syndrome suggested by altered imprinting pattern in the IGF2–H19 domain. Hum. Mol. Genet.4(12) , 2379–2385 (1995).
  • Demars J , GicquelC. Epigenetic and genetic disturbance of the imprinted 11p15 region in Beckwith–Wiedemann and Silver–Russell syndromes. Clin. Genet.81(4) , 350–361 (2012).
  • Gicquel C , RossignolS, CabrolS et al. Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver–Russell syndrome. Nat. Genet. 37(9) , 1003–1007 (2005).
  • Engel JR , SmallwoodA, HarperA et al. Epigenotype–phenotype correlations in Beckwith–Wiedemann syndrome. J. Med. Genet. 37(12) , 921–926 (2000).
  • Diaz-Meyer N , DayCD, KhatodK et al. Silencing of CDKN1C (p57KIP2) is associated with hypomethylation at KvDMR1 in Beckwith–Wiedemann syndrome. J. Med. Genet. 40(11) , 797–801 (2003).
  • Lam WW , HatadaI, OhishiS et al. Analysis of germline CDKN1C (p57KIP2) mutations in familial and sporadic Beckwith–Wiedemann syndrome (BWS) provides a novel genotype–phenotype correlation. J. Med. Genet. 36(7) , 518–523 (1999).
  • Grandjean V , SmithJ, SchofieldPN, Ferguson-SmithAC. Increased IGF-II protein affects p57kip2 expression in vivo and in vitro: implications for Beckwith–Wiedemann syndrome. Proc. Natl Acad. Sci. USA97(10) , 5279–5284 (2000).
  • Sparago A , CerratoF, VernucciM, FerreroGB, SilengoMC, RiccioA. Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith–Wiedemann syndrome. Nat. Genet.36(9) , 958–960 (2004).
  • Zollino M , OrteschiD, MarangiG et al. A case of Beckwith–Wiedemann syndrome caused by a cryptic 11p15 deletion encompassing the centromeric imprinted domain of the BWS locus. J. Med. Genet. 47(6) , 429–432 (2010).
  • Kajii T , OhamaK. Androgenetic origin of hydatidiform mole. Nature268(5621) , 633–634 (1977).
  • Vejerslev LO , SundeL, HansenBF, LarsenJK, ChristensenIJ, LarsenG. Hydatidiform mole and fetus with normal karyotype: support of a separate entity. Obstet. Gynecol.77(6) , 868–874 (1991).
  • El-Maarri O , SeoudM, CoullinP et al. Maternal alleles acquiring paternal methylation patterns in biparental complete hydatidiform moles. Hum. Mol. Genet. 12(12) , 1405–1413 (2003).
  • Murdoch S , DjuricU, MazharB et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat. Genet. 38(3) , 300–302 (2006).
  • Feldmann J , PrieurAM, QuartierP et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am. J. Hum. Genet. 71(1) , 198–203 (2002).
  • Hoffman HM , MuellerJL, BroideDH, WandererAA, KolodnerRD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome. Nat. Genet.29(3) , 301–305 (2001).
  • Tong ZB , BondyCA, ZhouJ, NelsonLM. A human homologue of mouse Mater, a maternal effect gene essential for early embryonic development. Hum. Reprod.17(4) , 903–911 (2002).
  • Tong ZB , GoldL, PfeiferKE et al. Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet.26(3) , 267–268 (2000).
  • Peng H , ChangB, LuC et al. Nlrp2, a maternal effect gene required for early embryonic development in the mouse. PLoS ONE7(1) , e30344 (2012).
  • Hata K , OkanoM, LeiH, LiE. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development129(8) , 1983–1993 (2002).
  • Djuric U , El-MaarriO, LambB et al. Familial molar tissues due to mutations in the inflammatory gene, NALP7, have normal postzygotic DNA methylation. Hum. Genet. 120(3) , 390–395 (2006).
  • Kinoshita T , WangY, HasegawaM, ImamuraR, SudaT. PYPAF3, a PYRIN-containing APAF-1-like protein, is a feedback regulator of caspase-1-dependent interleukin-1beta secretion. J. Biol. Chem.280(23) , 21720–21725 (2005).
  • McMaster MT , DeySK, AndrewsGK. Association of monocytes and neutrophils with early events of blastocyst implantation in mice. J. Reprod. Fertil.99(2) , 561–569 (1993).
  • Messaed C , AkouryE, DjuricU et al. NLRP7, a nucleotide oligomerization domain-like receptor protein, is required for normal cytokine secretion and co-localizes with Golgi and the microtubule-organizing center. J. Biol. Chem. 286(50) , 43313–43323 (2011).
  • Maher ER . Imprinting and assisted reproductive technology. Hum. Mol. Genet.14(Suppl. 1) , R133–R138 (2005).
  • Humpherys D , EgganK, AkutsuH et al. Epigenetic instability in ES cells and cloned mice. Science 293(5527) , 95–97 (2001).
  • Parry DA , LoganCV, HaywardBE et al. Mutations causing familial biparental hydatidiform mole implicate c6orf221 as a possible regulator of genomic imprinting in the human oocyte. Am. J. Hum. Genet. 89(3) , 451–458 (2011).
  • Reddy R , AkouryE, Phuong Nguyen NM et al. Report of four new patients with protein-truncating mutations in C6orf221/KHDC3L and colocalization with NLRP7. Eur. J. Hum. Genet. doi:10.1038/ejhg.2012.274 (2012) (Epub ahead of print).
  • Meyer E , LimD, PashaS et al. Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith–Wiedemann syndrome). PLoS Genet. 5(3) , e1000423 (2009).
  • Flanagan SE , PatchAM, MackayDJ et al. Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes 56(7) , 1930–1937 (2007).
  • Polak M , ShieldJ. Neonatal and very-early-onset diabetes mellitus. Semin. Neonatol.9(1) , 59–65 (2004).
  • Edghill EL , FlanaganSE, PatchAM et al. Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes 57(4) , 1034–1042 (2008).
  • Mackay DJ , TempleIK. Transient neonatal diabetes mellitus type 1. Am J. Med. Genet.154C(3) , 335–342 (2010).
  • Mackay DJ , CallawayJL, MarksSM et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat. Genet. 40(8) , 949–951 (2008).
  • Looman C , AbrinkM, MarkC, HellmanL. KRAB zinc finger proteins: an analysis of the molecular mechanisms governing their increase in numbers and complexity during evolution. Mol. Biol. Evol.19(12) , 2118–2130 (2002).
  • Li X , ItoM, ZhouF et al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell 15(4) , 547–557 (2008).
  • Quenneville S , VerdeG, CorsinottiA et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell 44(3) , 361–372 (2011).
  • Zuo X , ShengJ, LauHT et al. Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain. J. Biol. Chem. 287(3) , 2107–2118 (2012).
  • Liu Y , TohH, SasakiH, ZhangX, ChengX. An atomic model of Zfp57 recognition of CpG methylation within a specific DNA sequence. Genes Dev.26(21) , 2374–2379 (2012).
  • Bliek J , VerdeG, CallawayJ et al. Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith–Wiedemann syndrome. Eur. J. Hum. Genet. 17(5) , 611–619 (2009).
  • Dias RP , BogdarinaI, CazierJB et al. Multiple segmental uniparental disomy associated with abnormal DNA methylation of imprinted loci in Silver–Russell syndrome. J. Clin. Endocrinol. Metab. 97(11) , E2188–E2193 (2012).
  • Azzi S , RossignolS, SteunouV et al. Multilocus methylation analysis in a large cohort of 11p15-related foetal growth disorders (Russell Silver and Beckwith Wiedemann syndromes) reveals simultaneous loss of methylation at paternal and maternal imprinted loci. Hum. Mol. Genet. 18(24) , 4724–4733 (2009).
  • Court F , Martin-TrujilloA, RomanelliV et al. Genome-wide allelic methylation analysis reveals disease-specific susceptibility to multiple methylation defects in imprinting syndromes. Hum. Mutat. 34(4) , 595–602 (2013).
  • Spengler S , GogielM, SchonherrN, BinderG, EggermannT. Screening for genomic variants in ZFP57 in Silver–Russell syndrome patients with 11p15 epimutations. Eur. J. Med. Genet.52(6) , 415–416 (2009).
  • Begemann M , SpenglerS, KanberD et al. Silver–Russell patients showing a broad range of ICR1 and ICR2 hypomethylation in different tissues. Clin. Genet. 80(1) , 83–88 (2011).
  • Lim D , BowdinSC, TeeL et al. Clinical and molecular genetic features of Beckwith–Wiedemann syndrome associated with assisted reproductive technologies. Hum. Reprod. 24(3) , 741–747 (2009).
  • Halliday J , OkeK, BrehenyS, AlgarE, J Amor D. Beckwith–Wiedemann syndrome and IVF: a case–control study. Am. J. Hum. Genet.75(3) , 526–528 (2004).
  • Maher ER , AfnanM, BarrattCL. Epigenetic risks related to assisted reproductive technologies: epigenetics, imprinting, ART and icebergs? Hum. Reprod.18(12) , 2508–2511 (2003).
  • Maher ER , BruetonLA, BowdinSC et al. Beckwith–Wiedemann syndrome and assisted reproduction technology (ART). J. Med. Genet. 40(1) , 62–64 (2003).
  • Sutcliffe AG , PetersCJ, BowdinS et al. Assisted reproductive therapies and imprinting disorders – a preliminary British survey. Hum. Reprod. 21(4) , 1009–1011 (2006).
  • Maher ER , BruetonLA, BowdinSC et al. Beckwith–Wiedemann syndrome and assisted reproduction technology (ART). J. Med. Genet. 40(1) , 62–64 (2003).
  • Cox GF , BurgerJ, LipV et al. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am. J. Hum. Genet. 71(1) , 162–164 (2002).
  • Young LE , FernandesK, McEvoyTG et al. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat. Genet. 27(2) , 153–154 (2001).
  • Ertzeid G , StorengR. The impact of ovarian stimulation on implantation and fetal development in mice. Hum. Reprod.16(2) , 221–225 (2001).
  • Doornbos ME , MaasSM, McDonnellJ, VermeidenJP, HennekamRC. Infertility, assisted reproduction technologies and imprinting disturbances: a Dutch study. Hum. Reprod.22(9) , 2476–2480 (2007).
  • Hiura H , OkaeH, MiyauchiN et al. Characterization of DNA methylation errors in patients with imprinting disorders conceived by assisted reproduction technologies. Hum. Reprod. 27(8) , 2541–2548 (2012).
  • Hammoud SS , PurwarJ, PfluegerC, CairnsBR, CarrellDT. Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil. Steril.94(5) , 1728–1733 (2010).
  • Ludwig M , KatalinicA, GrossS, SutcliffeA, VaronR, HorsthemkeB. Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J. Med. Genet.42(4) , 289–291 (2005).
  • Pierre A , GautierM, CallebautI et al. Atypical structure and phylogenomic evolution of the new eutherian oocyte- and embryo-expressed KHDC1/DPPA5/ECAT1/OOEP gene family. Genomics 90(5) , 583–594 (2007).
  • Hayward BE , De Vos M, Talati N et al. Genetic and epigenetic analysis of recurrent hydatidiform mole. Hum. Mutat.30(5) , E629–E639 (2009).
  • Lim D , BowdinSC, TeeL et al. Clinical and molecular genetic features of Beckwith–Wiedemann syndrome associated with assisted reproductive technologies. Hum. Reprod. 24(3) , 741–747 (2009).
  • Mackay DJ , CallawayJL, MarksSM et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat. Genet. 40(8) , 949–951 (2008).
  • Rossignol S , SteunouV, ChalasC et al. The epigenetic imprinting defect of patients with Beckwith–Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region. J. Med. Genet. 43(12) , 902–907 (2006).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.