323
Views
0
CrossRef citations to date
0
Altmetric
Review

The P53 Mirna Interactome and its Potential Role in the Cancer Clinic

, , , , , , & show all
Pages 417-428 | Published online: 29 Jul 2013

References

  • Vaseva AV , MarchenkoND, JiK, TsirkaSE, HolzmannS, MollUM. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell149(7) , 1536–1548 (2012).
  • Sionov RV , HauptY. The cellular response to p53: the decision between life and death. Oncogene18(45) , 6145–6157 (1999).
  • Levine AJ . p53, the cellular gatekeeper for growth and division. Cell88(3) , 323–331 (1997).
  • Freedman DA , LevineAJ. Regulation of the p53 protein by the MDM2 oncoprotein – thirty-eighth G.H.A. Clowes Memorial Award Lecture. Cancer Res.59(1) , 1–7 (1999).
  • Banin S , MoyalL, ShiehS et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281(5383) , 1674–1677 (1998).
  • An WG , KanekalM, SimonMC, MaltepeE, BlagosklonnyMV, NeckersLM. Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature392(6674) , 405–408 (1998).
  • Leung AK , SharpPA. microRNAs: a safeguard against turmoil? Cell130(4) , 581–585 (2007).
  • Chang TC , WentzelEA, KentOA et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26(5) , 745–752 (2007).
  • He L , HeX, LimLP et al. A microRNA component of the p53 tumour suppressor network. Nature 447(7148) , 1130–1134 (2007).
  • Sachdeva M , ZhuS, WuF et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc. Natl Acad. Sci. USA 106(9) , 3207–3212 (2009).
  • Yan HL , XueG, MeiQ et al. Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J. 28(18) , 2719–2732 (2009).
  • Hermeking H . MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat. Rev. Cancer12(9) , 613–626 (2012).
  • Suzuki HI , YamagataK, SugimotoK, IwamotoT, KatoS, MiyazonoK. Modulation of microRNA processing by p53. Nature460(7254) , 529–533 (2009).
  • Mudhasani R , ZhuZ, HutvagnerG et al. Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells. J. Cell Biol. 181(7) , 1055–1063 (2008).
  • Hu W , ChanCS, WuR et al. Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol. Cell 38(5) , 689–699 (2010).
  • Le MT , TehC, Shyh-ChangN et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 23(7) , 862–876 (2009).
  • Yamakuchi M , FerlitoM, LowensteinCJ. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl Acad. Sci. USA105(36) , 13421–13426 (2008).
  • Fornari F , GramantieriL, GiovanniniC et al. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 69(14) , 5761–5767 (2009).
  • Nishida N , YokoboriT, MimoriK et al. MicroRNA miR-125b is a prognostic marker in human colorectal cancer. Int. J. Oncol. 38(5) , 1437–1443 (2011).
  • Kumar M , LuZ, TakwiAA et al. Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene 30(7) , 843–853 (2011).
  • Corney DC , Flesken-NikitinA, GodwinAK, WangW, NikitinAY. MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res.67(18) , 8433–8438 (2007).
  • Raver-Shapira N , MarcianoE, MeiriE et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol. Cell 26(5) , 731–743 (2007).
  • Tarasov V , JungP, VerdoodtB et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6(13) , 1586–1593 (2007).
  • Siemens H , JackstadtR, HuntenS et al. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial–mesenchymal transitions. Cell Cycle 10(24) , 4256–4271 (2011).
  • Kaller M , LiffersST, OeljeklausS et al. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol. Cell. Proteomics 10(8) , M111.010462 (2011).
  • Heinemann A , ZhaoF, PechlivanisS et al. Tumor suppressive microRNAs miR-34a/c control cancer cell expression of ULBP2, a stress-induced ligand of the natural killer cell receptor NKG2D. Cancer Res. 72(2) , 460–471 (2012).
  • Bommer GT , GerinI, FengY et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. 17(15) , 1298–1307 (2007).
  • Musumeci M , CoppolaV, AddarioA et al. Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 30(41) , 4231–4242 (2011).
  • Yamakuchi M , LottermanCD, BaoC et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc. Natl Acad. Sci. USA 107(14) , 6334–6339 (2010).
  • Zhang J , SunQ, ZhangZ, GeS, HanZG, ChenWT. Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2–p53 feedback loop. Oncogene (2012).
  • Yan D , DongXD, ChenX et al. Role of microRNA-182 in posterior uveal melanoma: regulation of tumor development through MITF, BCL2 and cyclin D2. PLoS One 7(7) , e40967 (2012).
  • Pichiorri F , SuhSS, RocciA et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 18(4) , 367–381 (2010).
  • Wellner U , SchubertJ, BurkUC et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat. Cell Biol. 11(12) , 1487–1495 (2009).
  • Kim T , VeroneseA, PichiorriF et al. p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J. Exp. Med. 208(5) , 875–883 (2011).
  • Fabbri M , BottoniA, ShimizuM et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA 305(1) , 59–67 (2011).
  • Ofir M , HacohenD, GinsbergD. MiR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E. Mol. Cell. Proteomics9(4) , 440–447 (2011).
  • Bandi N , VassellaE. miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol. Cancer10 , 55 (2011).
  • Klein U , LiaM, CrespoM et al. The DLEU2/miR-15a/16–11 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17(1) , 28–40 (2010).
  • Bhattacharya R , NicolosoM, ArvizoR et al. MiR-15a and MiR-16 control Bmi-1 expression in ovarian cancer. Cancer Res. 69(23) , 9090–9095 (2009).
  • Calin GA , DumitruCD, ShimizuM et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99(24) , 15524–15529 (2002).
  • Bonci D , CoppolaV, MusumeciM et al. The miR-15a–miR-16–11 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat. Med. 14(11) , 1271–1277 (2008).
  • Gregory PA , BertAG, PatersonEL et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10(5) , 593–601 (2008).
  • Bohlig L , FriedrichM, EngelandK. p53 activates the PANK1/miRNA-107 gene leading to downregulation of CDK6 and p130 cell cycle proteins. Nucleic Acids Res.39(2) , 440–453 (2011).
  • Zhu H , DoughertyU, RobinsonV et al. EGFR signals downregulate tumor suppressors miR-143 and miR-145 in western diet-promoted murine colon cancer: role of G1 regulators. Mol. Cell. Proteomics 9(7) , 960–975 (2011).
  • Xu N , PapagiannakopoulosT, PanG, ThomsonJA, KosikKS. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell137(4) , 647–658 (2009).
  • Saleh AD , SavageJE, CaoL et al. Cellular stress induced alterations in microRNA let-7a and let-7b expression are dependent on p53. PLoS One 6(10) , e24429 (2011).
  • Sundaram P , HultineS, SmithLM et al. p53-responsive miR-194 inhibits thrombospondin-1 and promotes angiogenesis in colon cancers. Cancer Res. 71(24) , 7490–7501 (2011).
  • Jin L , HuWL, JiangCC et al. MicroRNA-149*, a p53-responsive microRNA, functions as an oncogenic regulator in human melanoma. Proc. Natl Acad. Sci. USA 108(38) , 15840–15845 (2011).
  • Feng Z , ZhangC, WuR, HuW. Tumor suppressor p53 meets microRNAs. J. Mol. Cell. Biol.3(1) , 44–50 (2011).
  • Boominathan L . The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex. PLoS One5(5) , e10615 (2010).
  • Pellegrino L , JacobJ, Roca-AlonsoL, KrellJ, CastellanoL, FramptonAE. Altered expression of the miRNA processing endoribonuclease Dicer has prognostic significance in human cancers. Expert Rev. Anticancer Ther.13(1) , 21–27 (2013).
  • Kumar MS , PesterRE, ChenCY et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev. 23(23) , 2700–2704 (2009).
  • Leveille N , ElkonR, DavalosV et al. Selective inhibition of microRNA accessibility by RBM38 is required for p53 activity. Nat. Commun. 2 , 513 (2011).
  • Le MT , Shyh-ChangN, KhawSL et al. Conserved regulation of p53 network dosage by microRNA-125b occurs through evolving miRNA-target gene pairs. PLoS Genet. 7(9) , e1002242 (2011).
  • Herrera-Merchan A , CerratoC, LuengoG et al. miR-33-mediated downregulation of p53 controls hematopoietic stem cell self-renewal. Cell Cycle 9(16) , 3277–3285 (2010).
  • Swarbrick A , WoodsSL, ShawA et al. miR-380–5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma. Nat. Med. 16(10) , 1134–1140 (2010).
  • Tian S , HuangS, WuS, GuoW, LiJ, HeX. MicroRNA-1285 inhibits the expression of p53 by directly targeting its 3´ untranslated region. Biochem. Biophys. Res. Commun.396(2) , 435–439 (2010).
  • Yamakuchi M , LowensteinCJ. MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle8(5) , 712–715 (2009).
  • Xiao J , LinH, LuoX, WangZ. miR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress. EMBO J.30(3) , 524–532 (2011).
  • Garibaldi F , CicchiniC, ConigliaroA et al. An epistatic mini-circuitry between the transcription factors Snail and HNF4alpha controls liver stem cell and hepatocyte features exhorting opposite regulation on stemness-inhibiting microRNAs. Cell Death Differ. 19(6) , 937–946 (2012).
  • Ahn YH , GibbonsDL, ChakravartiD et al. ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression. J. Clin. Invest. 122(9) , 3170–3183 (2012).
  • Milo R , Shen-OrrS, ItzkovitzS, KashtanN, ChklovskiiD, AlonU. Network motifs: simple building blocks of complex networks. Science298(5594) , 824–827 (2002).
  • Ragimov N , KrauskopfA, NavotN, RotterV, OrenM, AloniY. Wild-type but not mutant p53 can repress transcription initiation in vitro by interfering with the binding of basal transcription factors to the TATA motif. Oncogene8(5) , 1183–1193 (1993).
  • Bousquet M , QuelenC, RosatiR et al. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J. Exp. Med. 205(11) , 2499–2506 (2008).
  • Zhou M , LiuZ, ZhaoY et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J. Biol. Chem. 285(28) , 21496–21507 (2010).
  • Shi XB , XueL, YangJ et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc. Natl Acad. Sci. USA 104(50) , 19983–19988 (2007).
  • Shi L , ZhangJ, PanT et al. MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Res. 1312 , 120–126 (2010).
  • Hofmann MH , HeinrichJ, RadziwillG, MoellingK. A short hairpin DNA analogous to miR-125b inhibits C-Raf expression, proliferation, and survival of breast cancer cells. Mol. Cell. Proteomics7(10) , 1635–1644 (2009).
  • Wu CI , ShenY, TangT. Evolution under canalization and the dual roles of microRNAs: a hypothesis. Genome Res.19(5) , 734–743 (2009).
  • Wagner A . Circuit topology and the evolution of robustness in two-gene circadian oscillators. Proc. Natl Acad. Sci. USA102(33) , 11775–11780 (2005).
  • Concepcion CP , HanYC, MuP et al. Intact p53-dependent responses in miR-34-deficient mice. PLoS Genet. 8(7) , e1002797 (2012).
  • Kasinski AL , SlackFJ. miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res.72(21) , 5576–5587 (2012).
  • John B , EnrightAJ, AravinA, TuschlT, SanderC, MarksDS. Human microRNA targets. PLoS Biol.2(11) , e363 (2004).
  • Lewis BP , BurgeCB, BartelDP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120(1) , 15–20 (2005).
  • Robins H , PressWH. Human microRNAs target a functionally distinct population of genes with AT-rich 3´ UTRs. Proc. Natl Acad. Sci. USA102(43) , 15557–15562 (2005).
  • Krell J , FramptonAE, StebbingJ. MicroRNAs in the cancer clinic. Front. Biosci. (Elite Ed.)5 , 204–213 (2013).
  • Trang P , WigginsJF, DaigeCL et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol. Ther. 19(6) , 1116–1122 (2011).
  • Kim HR , RoeJS, LeeJE, HwangIY, ChoEJ, YounHD. A p53-inducible microRNA-34a downregulates Ras signaling by targeting IMPDH. Biochem. Biophys. Res. Commun.418(4) , 682–688 (2012).
  • Kim NH , KimHS, LiXY et al. A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial–mesenchymal transition. J. Cell Biol. 195(3) , 417–433 (2011).
  • Kim NH , KimHS, KimNG et al. p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci. Signal. 4(197) , ra71 (2011).
  • Wu J , WuG, LvL et al. MicroRNA-34a inhibits migration and invasion of colon cancer cells via targeting to Fra-1. Carcinogenesis 33(3) , 519–528 (2012).
  • Yamamura S , SainiS, MajidS et al. MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells. PLoS One 7(1) , e29722 (2012).
  • Liu Q , FuH, SunF et al. miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res. 36(16) , 5391–5404 (2008).
  • Manfe V , BiskupE, RosbjergA et al. miR-122 regulates p53/Akt signalling and the chemotherapy-induced apoptosis in cutaneous T-cell lymphoma. PLoS One 7(1) , e29541 (2012).
  • Suh SO , ChenY, ZamanMS et al. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis 32(5) , 772–778 (2011).
  • Wang J , LiJ, ShenJ, WangC, YangL, ZhangX. MicroRNA-182 downregulates metastasis suppressor 1 and contributes to metastasis of hepatocellular carcinoma. BMC Cancer12 , 227 (2012).
  • Georges SA , BieryMC, KimSY et al. Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215. Cancer Res. 68(24) , 10105–10112 (2008).
  • Song B , WangY, KudoK, GavinEJ, XiY, JuJ. miR-192 Regulates dihydrofolate reductase and cellular proliferation through the p53–microRNA circuit. Clin. Cancer Res.14(24) , 8080–8086 (2008).
  • Shimono Y , ZabalaM, ChoRW et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138(3) , 592–603 (2009).
  • Choi YC , YoonS, JeongY, YoonJ, BaekK. Regulation of vascular endothelial growth factor signaling by miR-200b. Mol. Cells32(1) , 77–82 (2011).
  • Roybal JD , ZangY, AhnYH et al. miR-200 Inhibits lung adenocarcinoma cell invasion and metastasis by targeting Flt1/VEGFR1. Mol. Cell. Proteomics 9(1) , 25–35 (2011).
  • Piovan C , PalmieriD, Di Leva G et al. Oncosuppressive role of p53-induced miR-205 in triple negative breast cancer. Mol. Oncol.6(4) , 458–472 (2012).
  • Xiao J , LinH, LuoX, WangZ. miR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress. EMBO J.30(24) , 5021 (2011).
  • Barsotti AM , BeckermanR, LaptenkoO, HuppiK, CaplenNJ, PrivesC. p53-dependent induction of PVT1 and miR-1204. J. Biol. Chem.287(4) , 2509–2519 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.