92
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Establishing the Clinical Utility of Epigenetic Markers in Cancer: Many Challenges Ahead

, &
Pages 513-523 | Published online: 24 Sep 2013

References

  • Berger SL , KouzaridesT, ShiekhattarR, ShilatifardA. An operational definition of epigenetics. Genes Dev.23(7) , 781–783 (2009).
  • Bird A . Perceptions of epigenetics. Nature447(7143) , 396–398 (2007).
  • Esteller M . Epigenetics in cancer. N. Engl. J. Med.358(11) , 1148–1159 (2008).
  • Febbo PG , LadanyiM, AldapeKD et al. NCCN task force report: evaluating the clinical utility of tumor markers in oncology. J. Natl Compr. Canc. Netw. 9(Suppl. 5) , vS1–S32 (2011).
  • Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet.13(7) , 484–492 (2012).
  • Weber M , SchübelerD. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr. Opin. Cell Biol.19(3) , 273–280 (2007).
  • Kelly TK , LiuY, LayFD, LiangG, BermanBP, JonesPA. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res.22(12) , 2497–2506 (2012).
  • Wysocka J , SwigutT, XiaoH et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442(7098) , 86–90 (2006).
  • Kouzarides T . Chromatin modifications and their function. Cell128(4) , 693 (2007).
  • Kondo Y , ShenL, ChengAS et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat. Genet. 40(6) , 741–750 (2008).
  • Schwartz YB , PirrottaV. Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet.8(1) , 9–22 (2007).
  • Bannister AJ , KouzaridesT. Regulation of chromatin by histone modifications. Cell Res.21(3) , 381–395 (2011).
  • Sanyal A , LajoieBR, JainG, DekkerJ. The long-range interaction landscape of gene promoters. Nature489(7414) , 109–113 (2012).
  • Fraser P , BickmoreW. Nuclear organization of the genome and the potential for gene regulation. Nature447(7143) , 413–417 (2007).
  • Livesey JH , EllisMJ, EvansMJ. Pre-analytical requirements. Clin. Biochem. Rev.29(Suppl. 1) , S11 (2008).
  • Dallol A , Al-AliW, Al-ShaibaniA, Al-MullaF. Analysis of DNA methylation in FFPE tissues using the MethyLight technology. In: Formalin-Fixed Paraffin-Embedded Tissues. Al-Mulla F (Ed.). Humana Press, NY, USA (2011).
  • Fanelli M , AmatoriS, BarozziI, MinucciS. Chromatin immunoprecipitation and high-throughput sequencing from paraffin-embedded pathology tissue. Nat. Protoc.6(12) , 1905–1919 (2011).
  • Hinshelwood RA , MelkiJR, HuschtschaLI et al. Aberrant de novo methylation of the p16INK4A CpG island is initiated post gene silencing in association with chromatin remodelling and mimics nucleosome positioning. Hum. Mol. Genet. 18(16) , 3098–3109 (2009).
  • Park PJ . ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet.10(10) , 669–680 (2009).
  • Dekker J , RippeK, DekkerM, KlecknerN. Capturing chromosome conformation. Science295(5558) , 1306–1311 (2002).
  • Clark SJ , StathamA, StirzakerC, MolloyPL, FrommerM. DNA methylation: bisulphite modification and analysis. Nat. Protoc.1(5) , 2353–2364 (2006).
  • Laird PW . The power and the promise of DNA methylation markers. Nat. Rev. Cancer3 , 253–266 (2003).
  • Laird PW . Principles and challenges of genome-wide DNA methylation analysis. Nat. Rev. Genet.11(3) , 191–203 (2010).
  • Xiong Z , LairdPW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res.25(12) , 2532–2534 (1997).
  • Tost J , DunkerJ, GutL. Analysis and quantification of multiple methylation variable positions in CpG islands by Pyrosequencing™. Biotechniques35(1) , 152–157 (2003).
  • Herman JG , GraffJR, MyöhänenS, NelkinBD, BaylinSB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA93(18) , 9821–9826 (1996).
  • Nygren AOH , AmezianeN, DuarteHMB et al. Methylation-specific MLPA (MS–MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res. 33(14) , e128 (2005).
  • Grunau C , ClarkSJ, RosenthalA. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res.29(13) , e65 (2001).
  • Shirane K , TohH, KobayashiH et al. Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-cpg methylation and role of DNA methyltransferases. PLoS Genet. 9(4) , e1003439 (2013).
  • Huang Y , PastorWA, ShenY, TahilianiM, LiuDR, RaoA. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One5(1) , e8888 (2010).
  • Meissner A , MikkelsenTS, GuH et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205) , 766–770 (2008).
  • Rush LJ , PlassC. Restriction landmark genomic scanning for DNA methylation in cancer: past, present, and future applications. Anal. Biochem.307(2) , 191–201 (2002).
  • Nekrutenko A , TaylorJ. Next-generation sequencing data interpretation: enhancing reproducibility and accessibility. Nat. Rev. Genet.13(9) , 667–672 (2012).
  • Banelli B , BrigatiC, Di Vinci A et al. A pyrosequencing assay for the quantitative methylation analysis of the PCDHB gene cluster, the major factor in neuroblastoma methylator phenotype. Lab. Invest.92(3) , 458–465 (2012).
  • Fraga MF , BallestarE, PazMF et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102(30) , 10604–10609 (2005).
  • Maunakea AK , ChepelevI, ZhaoK. Epigenome mapping in normal and disease states. Circ. Res.107(3) , 327–339 (2010).
  • Kerkel K , SpadolaA, YuanE et al. Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat. Genet. 40(7) , 904–908 (2008).
  • Hitchins MP , RapkinsRW, KwokCT et al. Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5´UTR. Cancer Cell 20(2) , 200–213 (2011).
  • Hawkins NJ , LeeJH, WongJJ, KwokCT, WardRL, HitchinsMP. MGMT methylation is associated primarily with the germline C>T SNP (rs16906252) in colorectal cancer and normal colonic mucosa. Mod. Pathol.22(12) , 1588–1599 (2009).
  • Byun H -M, Nordio F, Coull BA et al. Temporal stability of epigenetic markers: sequence characteristics and predictors of short-term DNA methylation variations. PLoS One7(6) , e39220 (2012).
  • Bernstein BE , StamatoyannopoulosJA, CostelloJF et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28(10) , 1045–1048 (2010).
  • Lim DH , MaherER. Human imprinting syndromes. Epigenomics1(2) , 347–369 (2009).
  • Chen M , MacphersonA, OwensJ, WittertG, HeilbronnLK. Obesity alone or with type 2 diabetes is associated with tissue specific alterations in DNA methylation and gene expression of PPARGC1A and IGF2. J. Diabetes Res. Clin. Metab. doi:10.7243/2050-0866-1-16 (2012).
  • Saito S , KatoJ, HiraokaS et al. DNA methylation of colon mucosa in ulcerative colitis patients: correlation with inflammatory status. Inflamm. Bowel Dis. 17(9) , 1955–1965 (2011).
  • Javierre BM , FernandezAF, RichterJ et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 20(2) , 170–179 (2010).
  • Warren JD , XiongW, BunkerAM et al. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med. 9(1) , 133 (2011).
  • Lofton-Day C , ModelF, DevosT et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin. Chem. 54(2) , 414–423 (2008).
  • Chen W -D, Han ZJ, Skoletsky J et al. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J. Natl Cancer Inst.97(15) , 1124–1132 (2005).
  • Itzkowitz S , BrandR, JandorfL et al. A simplified, noninvasive stool DNA test for colorectal cancer detection. Am. J. Gastroenterol. 103(11) , 2862–2870 (2008).
  • Zou H , HarringtonJ, RegoRL, AhlquistDA. A novel method to capture methylated human DNA from stool: implications for colorectal cancer screening. Clin. Chem.53(9) , 1646–1651 (2007).
  • Wong CK , FedorakRN, ProsserCI, StewartME, Van Zanten SV, Sadowski DC. The sensitivity and specificity of guaiac and immunochemical fecal occult blood tests for the detection of advanced colonic adenomas and cancer. Int. J. Colorectal Dis.27(12) , 1657–1664 (2012).
  • Goessl C , KrauseH, MüllerM et al. Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res. 60(21) , 5941–5945 (2000).
  • Eijsink JJ , Lendvai Á, Deregowski V et al. A four-gene methylation marker panel as triage test in high-risk human papillomavirus positive patients. Int. J. Cancer130(8) , 1861–1869 (2012).
  • Anglim PP , GallerJS, KossMN et al. Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer. Mol. Cancer 7(1) , 62 (2008).
  • Hartmann O , SpyratosF, HarbeckN et al. DNA methylation markers predict outcome in node-positive, estrogen receptor-positive breast cancer with adjuvant anthracycline-based chemotherapy. Clin. Cancer Res. 15(1) , 315–323 (2009).
  • Lai HC , LinYW, HuangTH et al. Identification of novel DNA methylation markers in cervical cancer. Int. J. Cancer 123(1) , 161–167 (2008).
  • Jones PA , BaylinSB. The epigenomics of cancer. Cell128(4) , 683–692 (2007).
  • Bernstein BE , MikkelsenTS, XieX et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2) , 315–326 (2006).
  • Frigola J , SongJ, StirzakerC, HinshelwoodRA, PeinadoMA, ClarkSJ. Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat. Genet.38(5) , 540–549 (2006).
  • Coolen MW , StirzakerC, SongJZ et al. Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat. Cell Biol. 12(3) , 235–246 (2010).
  • Lee JW , WeinerRS, SailstadJM et al. Method validation and measurement of biomarkers in nonclinical and clinical samples in drug development: a conference report. Pharm. Res. 22(4) , 499–511 (2005).
  • Hesson LB , HitchinsMP, WardRL. Epimutations and cancer predisposition: importance and mechanisms. Curr. Opin. Genet. Dev.20(3) , 290–298 (2010).
  • Ward RL , HicksS, HawkinsNJ. Population-based molecular screening for lynch syndrome: implications for personalized medicine. J. Clin. Oncol.31(20) , 2554–2562 (2013).
  • Rivera AL , PelloskiCE, GilbertMR et al. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol. 12(2) , 116–121 (2010).
  • Mullard A . Epigenomic colon cancer kit. Nat. Biotech.27(12) , 1066–1066 (2009).
  • Lidgard GP , DomanicoMJ, BruinsmaJJ et al. Clinical performance of an automated stool DNA assay for detection of colorectal neoplasia. Clin. Gastroenterol. Hepatol. doi:10.1016/j.cgh.2013.04.023 (2013) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.