1,264
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Role of miRNAs in Normal and Leukemic Hematopoiesis

, , &
Pages 539-552 | Published online: 24 Sep 2013

References

  • Shih AH , Abdel-WahabO, PatelJP, LevineRL. The role of mutations in epigenetic regulators in myeloid malignancies. Nat. Rev. Cancer12(9) , 599–612 (2012).
  • Fazi F , RosaA, FaticaA et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123(5) , 819–831 (2005).
  • Fazi F , NerviC. MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination. Cardiovasc. Res.79(4) , 553–561 (2008).
  • Sato F , TsuchiyaS, MeltzerSJ, ShimizuK. MicroRNAs and epigenetics. FEBS J.278(10) , 1598–1609 (2011).
  • Kunej T , GodnicI, FerdinJ, HorvatS, DovcP, CalinGA. Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat. Res.717(1–2) , 77–84 (2011).
  • Rouhi A , MagerDL, HumphriesRK, KuchenbauerF. MiRNAs, epigenetics, and cancer. Mamm. Genome19(7–8) , 517–525 (2008).
  • Garzon R , LiuS, FabbriM et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113(25) , 6411–6418 (2009).
  • Zardo G , CiolfiA, VianL et al. Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood 119(17) , 4034–4046 (2012).
  • Cedar H , BergmanY. Epigenetics of haematopoietic cell development. Nat. Rev. Immunol.11(7) , 478–488 (2011).
  • Zardo G , CiminoG, NerviC. Epigenetic plasticity of chromatin in embryonic and hematopoietic stem/progenitor cells: therapeutic potential of cell reprogramming. Leukemia22(8) , 1503–1518 (2008).
  • Bryder D , RossiDJ, WeissmanIL. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am. J. Pathol.169(2) , 338–346 (2006).
  • Sashida G , IwamaA. Epigenetic regulation of hematopoiesis. Int. J. Hematol.96(4) , 405–412 (2012).
  • Calvanese V , FernándezAF, UrdinguioRG et al. A promoter DNA demethylation landscape of human hematopoietic differentiation. Nucleic Acids Res. 40(1) , 116–131 (2012).
  • Franchini DM , Schmitz K-M, Petersen-Mahrt SK. 5-methylcytosine DNA demethylation: more than losing a methyl group. Annu. Rev. Genet.46 , 419–441 (2012).
  • Geiger H , de Haan G, Florian MC. The ageing haematopoietic stem cell compartment. Nat. Rev. Immunol.13(5) , 376–389 (2013).
  • Bocker MT , HellwigI, BreilingA, EcksteinV, HoAD, LykoF. Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood117(19) , e182–e189 (2011).
  • Cui K , ZangC, Roh T-Y et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell4(1) , 80–93 (2009).
  • Pietersen AM , van Lohuizen M. Stem cell regulation by polycomb repressors: postponing commitment. Curr. Opin. Cell Biol.20(2) , 201–207 (2008).
  • Cao R , ZhangY. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED–EZH2 complex. Mol. Cell15(1) , 57–67 (2004).
  • Viré E , BrennerC, DeplusR et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439(7078) , 871–874 (2006).
  • Dawson MA , KouzaridesT. Cancer epigenetics: from mechanism to therapy. Cell150(1) , 12–27 (2012).
  • Lee RC , FeinbaumRL, AmbrosV. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75(5) , 843–854 (1993).
  • Lagos-Quintana M , RauhutR, LendeckelW, TuschlT. Identification of novel genes coding for small expressed RNAs. Science294(5543) , 853–858 (2001).
  • Lau NC , LimLP, WeinsteinEG, BartelDP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science294 , 858–862 (2001).
  • Lee RC , AmbrosV. An extensive class of small RNAs in Caenorhabditis elegans. Science294(5543) , 862–864 (2001).
  • Ambros V . MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell113(6) , 673–676 (2003).
  • Griffiths-Jones S . The microRNA Registry. Nucleic Acids Res.32 , D109–D111 (2004).
  • Filipowicz W , BhattacharyyaSN, SonenbergN. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genetics9(2) , 102–114 (2008).
  • Lewis BP , ShihI, Jones-RhoadesMW, BartelDP, BurgeCB. Prediction of mammalian microRNA targets. Cell115(7) , 787–798 (2003).
  • Lewis BP , BurgeCB, BartelDP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120(1) , 15–20 (2005).
  • Peters L , MeisterG. Argonaute proteins: mediators of RNA silencing. Mol. Cell26 , 611–623 (2007).
  • Baskerville S , BartelDP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA11(3) , 241–247 (2005).
  • Kim VN . MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol.6 , 376–385 (2005).
  • Morlando M , BallarinoM, GromakN, PaganoF, BozzoniI, ProudfootNJ. Primary microRNA transcripts are processed co-transcriptionally. Nat. Struct. Mol. Biol.15(9) , 902–909 (2008).
  • Ballarino M , PaganoF, GirardiE et al. Coupled RNA processing and transcription of intergenic primary micrornas coupled RNA processing and transcription of intergenic. Mol. Cell. Biol. 29(20) , 5632–5638 (2009).
  • Denli AM , TopsBB, PlasterkRH, KettingRF, HannonGJ. Processing of primary microRNAs by the microprocessor complex. Nature432(7014) , 231–235 (2004).
  • Gregory RI , YanKP, AmuthanG et al. The microprocessor complex mediates the genesis of microRNAs. Nature 432(7014) , 235–240 (2004).
  • Chendrimada TP , GregoryRI, KumaraswamyE et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051) , 740–744 (2005).
  • Alemdehy MF , ErkelandSJ. MicroRNAs: key players of normal and malignant myelopoiesis. Curr. Opin. Hematol.19(4) , 261–267 (2012).
  • Bissels U , BosioA, WagnerW. MicroRNAs are shaping the hematopoietic landscape. Haematologica97(2) , 160–167 (2012).
  • Guo S , LuJ, SchlangerR et al. MicroRNA miR-125a controls hematopoietic stem cell number. Proc. Natl Acad. Sci. USA 107(32) , 14229–14234 (2010).
  • Arrate MP , VincentT, OdvodyJ, KarR, JonesSN, EischenCM. MicroRNA biogenesis is required for Myc-induced B-cell lymphoma development and survival. Cancer Res.70(14) , 6083–6092 (2010).
  • O‘Carroll D , MecklenbraukerI, DasPP et al. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev. 21(16) , 1999–2004 (2007).
  • Georgantas RW , HildrethR, MorisotS et al. microRNA expression and function: a circuit diagram of differentiation control. Proc. Natl Acad. Sci. USA 104(8) , 2750–2755 (2007).
  • Petriv OI , KuchenbauerF, DelaneyAD et al. Comprehensive microRNA expression profiling of the hematopoietic hierarchy. 107(35) , 15443–15448 (2010).
  • Rhyasen GW , StarczynowskiDT. Deregulation of microRNAs in myelodysplastic syndrome. Leukemia26(1) , 13–22 (2012).
  • Gordon JE , WongJJ, RaskoJE. MicroRNAs in myeloid malignancies. Br. J. Haematol.162(2) , 162–176 (2013).
  • Esteller M . Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum. Mol. Genet.16 , R50–59 (2007).
  • Jones PA , BaylinSB. The fundamental role of epigenetic events in cancer. Nat. Rev. Genetics3(6) , 415–428 (2002).
  • Weber B , StresemannC, BruecknerB, LykoF. Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle6(9) , 1001–1005 (2007).
  • Bernstein BE , MeissnerA, LanderES. The mammalian epigenome. Cell128(4) , 669–681 (2007).
  • Fazi F , RacanicchiS, ZardoG et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer cell 12(5) , 457–466 (2007).
  • Meng F , HensonR, Wehbe-JanekH, SmithH, UenoY, PatelT. The microRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes. J. Biol. Chem.282(11) , 8256–8264 (2007).
  • Li Y , GaoL, LuoX et al. Epigenetic silencing of microRNA-193a contributes to leukemogenesis in t(8;21) acute myeloid leukemia by activating the PTEN/PI3K signal pathway. Blood 121(3) , 499–509 (2013).
  • Díaz-Beyá M , NavarroA, FerrerG et al. Acute myeloid leukemia with translocation (8;16)(p11;p13) and MYST3–CREBBP rearrangement harbors a distinctive microRNA signature targeting RET proto-oncogene. Leukemia 27(3) , 595–603 (2013).
  • Bueno MJ , Perez de Castro I, Gomez de Cedron M et al. Genetic and epigenetic silencing of MicroRNA-203 enhances ABL1 and BCR–ABL1 oncogene expression. Cancer cell13(6) , 496–506 (2008).
  • Chim CS , WanTS, WongKY, FungTK, DrexlerHG, WongKF. Methylation of miR-34a, miR-34b/c, miR-124-121 and miR-203 in Ph-negative myeloproliferative neoplasms. J. Transl. Med.9(1) , 197 (2011).
  • Chim CS , WongKY, LeungCY et al. Epigenetic inactivation of the hsa-miR-203 in haematological malignancies. J. Cell. Mol. Med. 15(12) , 2760–2767 (2011).
  • Liu S , Wu L-C, Pang J et al. Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer cell17(4) , 333–347 (2010).
  • Gao X -N, Lin J, Li Y-H et al. MicroRNA-193a represses c-kit expression and functions as a methylation-silenced tumor suppressor in acute myeloid leukemia. Oncogene30(31) , 3416–3428 (2011).
  • Pigazzi M , ManaraE, BresolinS et al. MicroRNA-34b promoter hypermethylation induces CREB overexpression and contributes to myeloid transformation. Haematologica 98(4) , 602–610 (2013).
  • Dickstein J , SenyukV, PremanandK et al. Methylation and silencing of miRNA-124 by EVI1 and self-renewal exhaustion of hematopoietic stem cells in murine myelodysplastic syndrome. Proc. Natl Acad. Sci. USA 107(21) , 9783–9788 (2010).
  • Erdogan B , BosompemA, PengD et al. Methylation of promoters of microRNAs and their host genes in myelodysplastic syndromes. Leuk. Lymphoma doi:10.3109/10428194.2013.790542 (2013) (Epub ahead of print)
  • Agirre X , Vilas-ZornozaA, Jiménez-VelascoA et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res. 69(10) , 4443–4453 (2009).
  • Roman-Gomez J , AgirreX, Jiménez-VelascoA et al. Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J. Clin. Oncol. 27(8) , 1316–1322 (2009).
  • Pospisil V , VargovaK, KokavecJ et al. Epigenetic silencing of the oncogenic miR-17–92 cluster during PU.1-directed macrophage differentiation. EMBO J. 30(21) , 4450–4464 (2011).
  • Duan Z , PersonRE, Lee H-H et al. Epigenetic regulation of protein-coding and microRNA genes by the Gfi1-interacting tumor suppressor PRDM5. Mol. Cell. Biol.27(19) , 6889–6902 (2007).
  • Hock H , HamblenMJ, RookeHM, SchindlerJW, SalequeS, FujiwaraY. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature431(7011) , 1002–1007 (2004).
  • Duan Z , HorwitzM. Targets of the transcriptional repressor oncoprotein Gfi-1. Proc. Natl Acad. Sci. USA100(10) , 5932–5937 (2003).
  • Spivakov M , FisherAG. Epigenetic signatures of stem-cell identity. Nat. Rev. Genetics8(4) , 263–271 (2007).
  • So AY , JungJW, LeeS, KimHS, KangKS. DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PloS One6(5) , e19503 (2011).
  • Benetti R , GonzaloS, JacoI et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat. Struct. Mol. Biol. 15(3) , 268–279 (2008).
  • Sinkkonen L , HugenschmidtT, BerningerP et al. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 15(3) , 259–267 (2008).
  • Ji H , EhrlichLI, SeitaJ et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467(7313) , 338–342 (2010).
  • Juan AH , KumarRM, MarxJG, YoungRA. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol. Cell.36(1) , 61–74 (2009).
  • Shimono Y , ZabalaM, ChoRW et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138(3) , 592–603 (2009).
  • Oguro H , YuanJ, TanakaS et al. Lethal myelofibrosis induced by Bmi1-deficient hematopoietic cells unveils a tumor suppressor function of the polycomb group genes. J. Exp. Med. 209(3) , 445–454 (2012).
  • Kamminga LM , BystrykhLV, de Boer A et al. The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood107(5) , 2170–2179 (2006).
  • Kent DG , DykstraBJ, CheyneJ, MaE, EavesCJ. Steel factor coordinately regulates the molecular signature and biologic function of hematopoietic stem cells. Blood112(3) , 560–567 (2008).
  • Cantor AB , OrkinSH. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene21(21) , 3368–3376 (1992).
  • Rice KL , HormaecheI, LichtJD. Epigenetic regulation of normal and malignant hematopoiesis. Oncogene26(47) , 6697–6714 (2007).
  • Chen C , LodishHF. MicroRNAs as regulators of mammalian hematopoiesis. Semin. Immunol.17(2) , 155–165 (2005).
  • Nervi C , FaziF. Oncoproteins, heterochromatin silencing and microRNAs. Epigenetics3(1) , 1–4 (2008).
  • Grigoryev SA , BulynkoYA, PopovaEY. The end adjusts the means: heterochromatin remodelling during terminal cell differentiation. Chromosome Res.14(1) , 53–69 (2006).
  • Popova EY , KraussSW, ShortSA et al. Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architectural proteins but depends on histone deacetylation. Chromosome Res. 17(1) , 47–64 (2009).
  • Zhang L , FlygareJ, WongP, LimB, LodishHF. miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes Dev.25(2) , 119–124 (2011).
  • Fabbri M , CroceCM, CalinGA. MicroRNAs in the ontogeny of leukemias and lymphomas. Leuk. Lymphoma50(2) , 160–170 (2009).
  • Fabbri M , GarzonR, CimminoA et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl Sci. USA 104(40) , 15805–15810 (2007).
  • Iorio M V, Piovan C, Croce CM. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim. Biophys. Acta.1799(10–12) , 694–701 (2010).
  • Jacob F , MonodJ. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol.3 , 318–356 (1961).
  • Schmitz KM , MayerC, PostepskaA, GrummtI. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev.24(20) , 2264–2269 (2010).
  • Goñi JR , De la Cruz X, Orozco M. Triplex-forming oligonucleotide target sequences in the human genome. Nucleic Acids Res.32(1) , 354–360 (2004).
  • Belotserkovskii BP , De Silva E, Tornaletti S, Wang G, Vasquez KM, Hanawalt PC. A triplex-forming sequence from the human c-MYC promoter interferes with DNA transcription. J. Biol. Chem.282(44) , 32433–32441 (2007).
  • Weinmann L , HöckJ, IvacevicT et al. Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell 136(3) , 496–507 (2009).
  • Liao JY , MaLM, GuoYH et al. Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3´ trailers. PLoS One 5(5) , e10563 (2010).
  • Zaratiegui M , IrvineDV, MartienssenRA. Noncoding RNAs and gene silencing. Cell128(4) , 763–776 (2007).
  • Han J , KimD, MorrisKV. Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells. Proc. Natl Acad. Sci. USA104(30) , 12422–12427 (2007).
  • Ting AH , SchuebelKE, HermanJG, BaylinSB. Short dsRNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nat. Genet.37(8) , 906–910 (2005).
  • Kim DH , VilleneuveLM, MorrisK V, Rossi JJ. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat. Struct. Mol. Biol.13(9) , 793–797 (2006).
  • Weinberg MS , VilleneuveLM, EhsaniAL et al. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA 12(2) , 256–262 (2006).
  • Matzke M , BirchlerJ. RNAi-mediated pathways in the nucleus. Nat. Rev. Genetics6(1) , 24–35 (2005).
  • Benhamed M , HerbigU, YeT, DejeanA, BischofO. Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat. Cell Biol.14(3) , 266–275 (2012).
  • Kim DH , SætromP, Sn⊘veO, RossiJJ. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc. Natl Acad. Sci. USA105(42) , 16230–16235 (2008).
  • Zardo G , FaziF, TravagliniL, NerviC. Dynamic and reversibility of heterochromatic gene silencing in human disease. Cell Res.15(9) , 679–690 (2005).
  • Baer C , ClausR, PlassC. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res.73(2) , 473–477 (2013).
  • Duursma AM , KeddeM, SchrierM, le Sage C, Agami R. miR-148 targets human DNMT3b protein coding region. RNA14(5) , 872–877 (2008).
  • Zardo G , CiolfiA, VianL et al. Transcriptional targeting by microRNA-polycomb complexes: a novel route in cell fate determination. Cell Cycle 11(19) , 3543–3549 (2012).
  • Garzon R , CroceCM. MicroRNAs in normal and malignant hematopoiesis. Curr. Opin. Hematol.15(4) , 19–21 (2008).
  • Hsu SD , LinFM, WuWY et al. miRTarBase: a database curates experimentally validated microRNA–target interactions. Nucleic Acids Res. 39 , D163–D169 (2011).