191
Views
0
CrossRef citations to date
0
Altmetric
Review

Dynamic Changes of the Epigenetic Landscape During Cellular Differentiation

, &
Pages 701-713 | Published online: 28 Nov 2013

References

  • Heintzman ND , StuartRK, HonG et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39(3) , 311–318 (2007).
  • Ku M , JaffeJD, KocheRP et al. H2A.Z landscapes and dual modifications in pluripotent and multipotent stem cells underlie complex genome regulatory functions. Genome Biol. 13(10) , R85 (2012).
  • Ghisletti S , BarozziI, MiettonF et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32(3) , 317–328 (2010).
  • Heintzman ND , HonGC, HawkinsRD et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459(7243) , 108–112 (2009).
  • Heinz S , BennerC, SpannN et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38(4) , 576–589 (2010).
  • Rada-Iglesias A , BajpaiR, SwigutT, BrugmannSA, FlynnRA, WysockaJ. A unique chromatin signature uncovers early developmental enhancers in humans. Nature470(7333) , 279–283 (2011).
  • Visel A , BlowMJ, LiZ et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457(7231) , 854–858 (2009).
  • Creyghton MP , ChengAW, WelsteadGG et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107(50) , 21931–21936 (2010).
  • Guenther MG , LevineSS, BoyerLA, JaenischR, YoungRA. A chromatin landmark and transcription initiation at most promoters in human cells. Cell130(1) , 77–88 (2007).
  • Mikkelsen TS , KuM, JaffeDB et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153) , 553–560 (2007).
  • Shilatifard A . The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem.81 , 65–95 (2012).
  • Vermeulen M , MulderKW, DenissovS et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131(1) , 58–69 (2007).
  • Moriniere J , RousseauxS, SteuerwaldU et al. Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature 461(7264) , 664–668 (2009).
  • Jacobson RH , LadurnerAG, KingDS, TjianR. Structure and function of a human TAFII250 double bromodomain module. Science288(5470) , 1422–1425 (2000).
  • Lauberth SM , NakayamaT, WuX et al. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152(5) , 1021–1036 (2013).
  • Hodl M , BaslerK. Transcription in the absence of histone H3.2 and H3K4 methylation. Curr. Biol.22(23) , 2253–2257 (2012).
  • Jin C , FelsenfeldG. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev.21(12) , 1519–1529 (2007).
  • Hu G , CuiK, NorthrupD et al. H2A.Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation. Cell Stem Cell 12(2) , 180–192 (2013).
  • Clouaire T , WebbS, SkeneP et al. Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev. 26(15) , 1714–1728 (2012).
  • Thomson JP , SkenePJ, SelfridgeJ et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464(7291) , 1082–1086 (2010).
  • Long HK , BlackledgeNP, KloseRJ. ZF–CXXC domain-containing proteins, CpG islands and the chromatin connection. Biochem. Soc. Trans.41(3) , 727–740 (2013).
  • Conaway RC , ConawayJW. The mediator complex and transcription elongation. Biochim. Biophys. Acta1829(1) , 69–75 (2013).
  • Luo Z , LinC, ShilatifardA. The super elongation complex (SEC) family in transcriptional control. Nat. Rev. Mol. Cell Biol.13(9) , 543–547 (2012).
  • Palermo RD , WebbHM, WestMJ. RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein–Barr virus. PLoS Pathog.7(10) , e1002334 (2011).
  • Rahman S , SowaME, OttingerM et al. The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Mol. Cell. Biol. 31(13) , 2641–2652 (2011).
  • Yoh SM , LucasJS, JonesKA. The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. Genes Dev.22(24) , 3422–3434 (2008).
  • Carvalho S , RaposoAC, MartinsFB et al. Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Nucleic Acids Res. 41(5) , 2881–2893 (2013).
  • Margueron R , LiG, SarmaK et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol. Cell 32(4) , 503–518 (2008).
  • Shen X , LiuY, HsuYJ et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol. Cell 32(4) , 491–502 (2008).
  • Gao Z , ZhangJ, BonasioR et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45(3) , 344–356 (2012).
  • Zhou W , ZhuP, WangJ et al. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol. Cell 29(1) , 69–80 (2008).
  • Eskeland R , LeebM, GrimesGR et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell 38(3) , 452–464 (2010).
  • Grau DJ , ChapmanBA, GarlickJD, BorowskyM, FrancisNJ, KingstonRE. Compaction of chromatin by diverse Polycomb group proteins requires localized regions of high charge. Genes Dev.25(20) , 2210–2221 (2011).
  • Kaustov L , OuyangH, AmayaM et al. Recognition and specificity determinants of the human CBX chromodomains. J. Biol. Chem. 286(1) , 521–529 (2011).
  • Farcas AM , BlackledgeNP, SudberyI et al. KDM2B links the Polycomb repressive complex 1 (PRC1) to recognition of CpG islands. Elife 1 , e00205 (2012).
  • He J , ShenL, WanM, TaranovaO, WuH, ZhangY. Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat. Cell Biol.15(4) , 373–384 (2013).
  • Wu X , JohansenJV, HelinK. Fbxl10/Kdm2b recruits Polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell49(6) , 1134–1146 (2013).
  • Arnold P , ScholerA, PachkovM et al. Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting. Genome Res. 23(1) , 60–73 (2013).
  • Cabianca DS , CasaV, BodegaB et al. A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 149(4) , 819–831 (2012).
  • Rinn JL , KerteszM, WangJK et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7) , 1311–1323 (2007).
  • Bernstein BE , MikkelsenTS, XieX et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2) , 315–326 (2006).
  • Voigt P , LeroyG, DruryWJ 3rd et al. Asymmetrically modified nucleosomes. Cell151(1) , 181–193 (2012).
  • Stock JK , GiadrossiS, CasanovaM et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat. Cell Biol. 9(12) , 1428–1435 (2007).
  • Min IM , WaterfallJJ, CoreLJ, MunroeRJ, SchimentiJ, LisJT. Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells. Genes Dev.25(7) , 742–754 (2011).
  • Schotta G , LachnerM, SarmaK et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18(11) , 1251–1262 (2004).
  • Schotta G , SenguptaR, KubicekS et al. A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev. 22(15) , 2048–2061 (2008).
  • Hahn M , DambacherS, DulevS et al. Suv4-20h2 mediates chromatin compaction and is important for cohesin recruitment to heterochromatin. Genes Dev. 27(8) , 859–872 (2013).
  • Allan RS , ZuevaE, CammasF et al. An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature 487(7406) , 249–253 (2012).
  • Bilodeau S , KageyMH, FramptonGM, RahlPB, YoungRA. SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev.23(21) , 2484–2489 (2009).
  • Yuan P , HanJ, GuoG et al. Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells. Genes Dev. 23(21) , 2507–2520 (2009).
  • Karimi MM , GoyalP, MaksakovaIA et al. DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8(6) , 676–687 (2011).
  • Hawkins RD , HonGC, LeeLK et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6(5) , 479–491 (2010).
  • Tan SL , NishiM, OhtsukaT et al. Essential roles of the histone methyltransferase ESET in the epigenetic control of neural progenitor cells during development. Development 139(20) , 3806–3816 (2012).
  • Liu X , GaoQ, LiP et al. UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nat. Commun. 4 , 1563 (2013).
  • Stadler MB , MurrR, BurgerL et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480(7378) , 490–495 (2011).
  • Williams K , ChristensenJ, HelinK. DNA methylation: TET proteins-guardians of CpG islands? EMBO Rep.13(1) , 28–35 (2012).
  • Nan X , NgHH, JohnsonCA et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683) , 386–389 (1998).
  • Baubec T , IvanekR, LienertF, SchubelerD. Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell153(2) , 480–492 (2013).
  • Lehnertz B , UedaY, DerijckAA et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13(14) , 1192–1200 (2003).
  • Arand J , SpielerD, KariusT et al. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet.8(6) , e1002750 (2012).
  • Li H , RauchT, ChenZX, SzaboPE, RiggsAD, PfeiferGP. The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J. Biol. Chem.281(28) , 19489–19500 (2006).
  • Quenneville S , TurelliP, BojkowskaK et al. The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell Rep. 2(4) , 766–773 (2012).
  • Brinkman AB , GuH, BartelsSJ et al. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 22(6) , 1128–1138 (2012).
  • Hagarman JA , MotleyMP, KristjansdottirK, SolowayPD. Coordinate regulation of DNA methylation and H3K27me3 in mouse embryonic stem cells. PLoS ONE8(1) , e53880 (2013).
  • Schlesinger Y , StraussmanR, KeshetI et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat. Genet. 39(2) , 232–236 (2007).
  • Wu H , CoskunV, TaoJ et al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329(5990) , 444–448 (2010).
  • Hodges E , SmithAD, KendallJ et al. High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res. 19(9) , 1593–1605 (2009).
  • Dhayalan A , RajaveluA, RathertP et al. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J. Biol. Chem. 285(34) , 26114–26120 (2010).
  • Hahn MA , WuX, LiAX, HahnT, PfeiferGP. Relationship between gene body DNA methylation and intragenic H3K9me3 and H3K36me3 chromatin marks. PLoS ONE6(4) , e18844 (2011).
  • Zhu J , AdliM, ZouJY et al. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152(3) , 642–654 (2013).
  • Lieberman-Aiden E , Van Berkum NL, Williams L et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science326(5950) , 289–293 (2009).
  • Guelen L , PagieL, BrassetE et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453(7197) , 948–951 (2008).
  • Meissner A , MikkelsenTS, GuH et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205) , 766–770 (2008).
  • Mohn F , WeberM, RebhanM et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30(6) , 755–766 (2008).
  • Bock C , BeermanI, LienWH et al. DNA methylation dynamics during in vivo differentiation of blood and skin stem cells. Mol. Cell 47(4) , 633–647 (2012).
  • Ernst J , KheradpourP, MikkelsenTS et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473(7345) , 43–49 (2011).
  • Gifford CA , ZillerMJ, GuH et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153(5) , 1149–1163 (2013).
  • Xie W , SchultzMD, ListerR et al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153(5) , 1134–1148 (2013).
  • Zentner GE , TesarPJ, ScacheriPC. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res.21(8) , 1273–1283 (2011).
  • Wamstad JA , AlexanderJM, TrutyRM et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151(1) , 206–220 (2012).
  • Zhang JA , MortazaviA, WilliamsBA, WoldBJ, RothenbergEV. Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell149(2) , 467–482 (2012).
  • Li Z , GadueP, ChenK et al. Foxa2 and H2A.Z mediate nucleosome depletion during embryonic stem cell differentiation. Cell 151(7) , 1608–1616 (2012).
  • Tan L , ShiYG. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development139(11) , 1895–1902 (2012).
  • Kooistra SM , HelinK. Molecular mechanisms and potential functions of histone demethylases. Nat. Rev. Mol. Cell Biol.13(5) , 297–311 (2012).
  • Chen X , XuH, YuanP et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133(6) , 1106–1117 (2008).
  • Aksoy I , JauchR, ChenJ et al. Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm. EMBO J. 32(7) , 938–953 (2013).
  • Whyte WA , BilodeauS, OrlandoDA et al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482(7384) , 221–225 (2012).
  • Lassar AB , PatersonBM, WeintraubH. Transfection of a DNA locus that mediates the conversion of 10.1/2 fibroblasts to myoblasts. Cell47(5) , 649–656 (1986).
  • Ladewig J , KochP, BrustleO. Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nat. Rev. Mol. Cell Biol.14(4) , 225–236 (2013).
  • Huangfu D , MaehrR, GuoW et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 26(7) , 795–797 (2008).
  • Mikkelsen TS , HannaJ, ZhangX et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454(7200) , 49–55 (2008).
  • Onder TT , KaraN, CherryA et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 483(7391) , 598–602 (2012).
  • Ruiz S , DiepD, GoreA et al. Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 109(40) , 16196–16201 (2012).
  • Soufi A , DonahueG, ZaretKS. Facilitators and impediments of the pluripotency reprogramming factors‘ initial engagement with the genome. Cell151(5) , 994–1004 (2012).
  • Chen J , LiuH, LiuJ et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat. Genet. 45(1) , 34–42 (2013).
  • You JS , KellyTK, De Carvalho DD, Taberlay PC, Liang G, Jones PA. OCT4 establishes and maintains nucleosome-depleted regions that provide additional layers of epigenetic regulation of its target genes. Proc. Natl Acad. Sci. USA108(35) , 14497–14502 (2011).
  • Gifford CA , MeissnerA. Epigenetic obstacles encountered by transcription factors: reprogramming against all odds. Curr. Opin. Genet. Dev.22(5) , 409–415 (2012).
  • Gaj T , GersbachCA, BarbasCF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol.31(7) , 397–405 (2013).
  • Bae JB . Perspectives of international human epigenome consortium. Genomics Inform.11(1) , 7–14 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.